
Towards Applications on the Decentralized Web
using Hypermedia-driven Query Engines

Ruben Taelman
IDLab, Department of Electronics and Information Systems, Ghent University –
imec, Ghent, Belgium

The Web is facing unprecedented challenges related to the control and ownership of data. Due to

recent privacy and manipulation scandals caused by the increasing centralization of data on the

Web into increasingly fewer large data silos, there is a growing demand for the re-decentralization
of the Web. Enforced by user-empowering legislature such as GDPR and CCPA, decentralization

initiatives such as Solid are being designed that aim to break personal data out of these silos and

give back control to the users. While the ability to choose where and how data is stored provides
significant value to users, it leads to major technical challenges due to the massive distribution

of data across the Web. Since we cannot expect application developers to take up this burden of
coping with all the complexities of handling this data distribution, there is a need for a software

layer that abstracts away these complexities, and makes this decentralized data feel as being

centralized. Concretely, we propose personal query engines to play the role of such an abstraction
layer. In this article, we discuss what the requirements are for such a query-based abstraction layer,

what the state of the art is in this area, and what future research is required. Even though many

challenges remain to achieve a developer-friendly abstraction for interacting with decentralized
data on the Web, the pursuit of it is highly valuable for both end-users that want to be in control

of their data and its processing and businesses wanting to enable this at a low development cost.

1. INTRODUCTION

The Web as originally envisioned by Tim Berners-Lee [Berners-Lee 1989] was highly
decentralized. Yet, in recent years, the Web has becoming increasingly centralized due
to large Web companies gobbling up increasingly more data into fewer large data silos.
While this centralization provides economic value to these handful of businesses, it makes
it more difficult for smaller data-oriented businesses to gain a foothold, and it opens the
door towards misuse of personal information and censorship. Due to the recurrence of
the latter problems in recent years, privacy-related legislature such as the European Gen-
eral Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA)
have been put into place. Since most businesses follow a centralized data silo model, a ma-
jor data reformation is taking place. To provide a vehicle for this data reformation, various
initiatives are being spawned that aim to re-decentralize data on the Web. These initiatives
include Solid [Verborgh 2022], Bluesky [Bluesky 2023], and Mastodon [Zignani et al.
2018]. While Solid aims to enable a domain-agnostic decentralization ecosystem, Bluesky
and Mastodon are focus on the social networking domain. Initiatives such as Solid enable

SIGWEB Newsletter Autumn 2024



2 · Ruben Taelman et al

everyone to have a personal data vault, where the user can choose where and how this
data vault is hosted, and who can access what data within this vault. While the contempo-
rary mode of data management leads to data silo owners being in control over data, these
decentralization initiatives give full control of data to the users. Furthermore, instead of
data being captured within a few large centralized data silos, decentralization initiatives
lead to data being spread over a huge number of small personalized data vaults across the
Web. Yet, these distributed data vaults are not isolated, but they are interlinked with each
other. For example, links between vaults can exist to represent friendships [Brickley and
Miller 2018] and hierarchies of comments on comments. Hence, this interlinking of data
forms Decentralized Knowledge Graphs [Berners-Lee 2009]. This massive data distribu-
tion leads to a radical shift in how businesses manage data, which is coupled with new
technical challenges, but also opens up new opportunities [Crum et al. 2024]. While most
innovations are focused on centralized big data solutions, there is a need for decentral-
ized small data solutions, which come with additional complexities due to its distribution
aspect.

The Web enables applications to be built and in a multitude of forms, such as browser-
based, native (desktop/mobile), back-end, . . . Most of these applications today are central-
ized, which means that they interact with a single data silo. Large data silos are typically
implemented through some form of database, which can be relational, document-oriented,
graph-based, . . . These databases could even run in the cloud or be distributed, but they
are usually accessable through a central access point or Web API. Common among these
databases, is that they offer access to the data in the form of a declarative query language,
such as SQL, GraphQL [Foundation ], Cypher [Francis et al. 2018], SPARQL [Harris
et al. 2013], . . . Through this query language, databases can abstract away complexities for
searching and updating data, such as using multiple internal indexes, or joining between
tables. As such, application developers only need to be concerned with writing queries
and passing them to the database management system, after which the query results can be
used within the application.

Applications on the decentralized Web do not just have to interact with a single data silo,
but they have to integrate data from across a potentially huge number of data vaults that
are spread over the Web. Similar to databases, data from across these vaults needs to be
joined together, and there could be a need for intermediary Web-based indexes to speed up
the search process. Just like we do not expect application developers to directly interact
with database internals such as tables and indexes, neither can we expect these developers
to find and integrate data from across vaults manually. Hence, there is a need for hid-
ing these complexities surrounding decentralized data management behind an abstraction
layer. Similar to data silos, this abstraction layer can exist in the form of a declarative
query language, which gives application developers a familiar way to interact with decen-
tralized data. Such queries then need to be processed by reusable engines that convert these
queries into multiple Web requests across data vaults. To cope with the heterogeneity of
data vaults caused by the different needs and facilities of Web users, query engines needs to
be hypermedia-driven for discovering and using vault capabilities during query processing.

In this article, we discuss which requirements exist for systems to query the decentral-
ized Web. Furthermore, we discuss which requirements can already be met with existing
techniques, and what future research is still needed.

SIGWEB Newsletter Autumn 2024



Towards Applications on the Decentralized Web using Hypermedia-driven Query Engines · 3

2. A QUERY ENGINE FOR THE DECENTRALIZED WEB

In practise, different types of Web-driven applications can exist, each of which interact
with data on the Web. First, the most obvious type is a traditional user-facing browser-
based application, that runs in the Web browser using browser-provided APIs, typically
just for the duration of the user’s session. Second, we consider the user-facing browserless
application, which concerns applications running outside of the browser, such as natively
on your mobile device, a personal computer, or a voice-enabled system. Third, there is
the non-interactive application, which does not offer any direct user interaction, such as
autonomous Web crawlers or other types of agents. In order to build such applications
across decentralized data, there is a need for query engines that can cope with the com-
plexities surrounding decentralization. Below, we discuss these requirements, which are
generalized from requirements specific to the Solid environment [Taelman 2024].

2.1 Execution of declarative queries

In order to provide a fixed and well-defined contract between the application developer
and the query engine, there is a need for a declarative query language. Declarativity is
key here, as it enables the application developer to specify what data is needed or needs
to be updated, without having to specify how and from where the data must be fetched
and combined. As such, the responsibility of determining the “how” is shifted to the query
engine, which becomes responsible for finding data and computing results. Furthermore,
this query language must be sufficiently expressive to handle a wide domain of questions
that applications over decentralized data may require.

2.2 Live discovery of data sources

Due to the potentially unbounded number of data sources over which data may be spread in
a decentralized environment, it is unfeasible to always assume application developers have
prior knowledge of sources relevant for each query. Furthermore, data within a decen-
tralized environment may be constantly evolving, and may even move across data sources
over time. Therefore, we can not assume application developers to be able to define all
relevant sources or their interconnectivity. As such, a query engine must be capable of
discovering query-relevant sources on its own. This could involve deriving sources from
hints provided by the application developer, such as the current user for using-facing ap-
plications, caches, and the current query. If these sources contain pointers to other sources,
the query engine may decide to recursively follow these pointers if they are deemed rele-
vant to the query. When multiple queries are executed in sequence, the query engine may
exploit cache-based techniques, on the condition that data sources explicitly indicate their
cacheability, e.g. through HTTP caching headers.

2.3 Handling API heterogeneity

Since decentralized environments may contain data sources in different forms, there will
not be a single API for data sources that is optimal for all different use cases. For example,
data served on low-end machine might benefit from a low-complexity API, while data
served on a high-end might offer more capabilities through its API. The capabilities of

SIGWEB Newsletter Autumn 2024



4 · Ruben Taelman et al

this API may even evolve over time if server capabilities or server load change. As such,
query engines will need to cope with the heterogeneous nature of APIs within decentralized
environments. In order for query engine to dynamically detect the capabilities of each API
and how to use them during query processing, APIs will need to be self-descriptive using
hypermedia description languages such as Hydra [Lanthaler and Gütl 2013].

2.4 Handling data model heterogeneity

Data exposed by different data sources may not only be heterogeneous in their API, but also
in terms of their data model. For example, some data may be exposed as RDF [Cyganiak
et al. 2014], while other data may be exposed using the property graph model [Rodriguez
and Neubauer 2010]. Besides the data model, sources using the same data model may also
offer data using different schemas. For example, RDF-based data sources may offer data
using different RDF vocabularies. In order to combine data from across these heteroge-
neous data models and schemas during query execution, there will be a need for model and
schema alignment techniques [Kifer 2008].

2.5 Authentication

Besides open data, data sources within decentralized environments may also contain pri-
vate and personal data that require privacy assurances such as authentication and autho-
rization. Query engines that back user-facing applications can therefore require authenti-
cation mechanisms to enable the query engine to authenticate itself to sources on behalf
of the user. Non-interactive applications on the other hand can benefit from agent-based
authentication. This allows the query engine to determine a personalized view over the de-
centralized environment, which means that the query engine can access anything the user
can access for the duration of the application session.

2.6 Personalized configuration

Next to authentication, query engines should allow users to customize how the engine op-
erates, how it handles data sources, and how it combines intermediary results. This can for
example include defining priorities of data sources, e.g. preferring UK-based data sources
over USA-based data sources. This is similar to Web browsers being personalizable, such
as configuring default languages and automatic translations, how to open specific files, and
how to cache content.

2.7 User-perceived performance

Decentralized applications should be usable with a sufficient level of user-perceived per-
formance [Nielsen 1993]. As such, when a user performs an action that translates to a
query execution, the user should be served with at least a partial response based on query
results in the order of seconds, so that user attention is kept within the application.
SIGWEB Newsletter Autumn 2024



Towards Applications on the Decentralized Web using Hypermedia-driven Query Engines · 5

2.8 Introspection of results

In order to provide sufficient levels of trust to the user about how results were computed,
there is a need to inspect the provenance trail of query results. This should allow users to
inspect from what sources the results originate from, and how they were combined. This
enables auditing of results, which may be necessary for privacy-concerning legislation such
as GDPR and CCPA, and the more recent European AI act.

3. SOLUTIONS AND CHALLENGES

In this section, we discuss to what respect the envisioned query engines over decentralized
environments can already be achieved. We discuss each requirement introduced above
separately in terms of what the state of the art is, and what challenges remain.

3.1 Execution of declarative queries

A multitude of declarative languages have been introduced that may be used to access de-
centralized environments. Most of these languages enable read and write capabilities. For
example, SQL has been proposed for querying over the Web many years ago [Mendelzon
et al. 1996]. The main downside of SQL is that it assumes a centralized data model and
schema, which makes integration in a decentralized environment difficult. A query lan-
guage that has been specifically designed for handling graph-based distributed data is the
W3C-recommended SPARQL language [Harris et al. 2013]. While the SPARQL language
is most commonly used for accessing centralized SPARQL endpoints [Feigenbaum et al.
2013], it is also possible to use it for querying multiple sources [Schwarte et al. 2011;
Hartig 2013]. Besides SPARQL, there are other graph-based query languages such as
Cypher [Francis et al. 2018], GraphQL [Foundation ] and GQL [Deutsch et al. 2022]. To
enable improved levels of developer experience, Object Relational Mapping-like libraries
may be built on top of these languages to simplify common tasks [Verborgh and Taelman
2020].

3.2 Live discovery of data sources

While plenty of research has been carried out in the area of federated querying [Schwarte
et al. 2011], existing federation approaches assume prior knowledge of data sources, which
means that additional sources can not be discovered on the fly. A less known querying
paradigm based on the Linked Data principles [Berners-Lee 2009] is called Link Traversal
Query Processing (LTQP) [Hartig 2013], which allows data sources to be discovered on the
fly during query execution by following Linked Data links between data sources. While
LTQP has been proven to work over the Solid environment [Taelman and Verborgh 2023],
it still suffers from performance limitations caused by the large number of links being
followed and ineffective query planning. More precise link discovery techniques, better
link handling [Eschauzier et al. 2023], collaborative querying [Tam 2023], and adaptive
query planning [Hanski 2023] can help solve these problems.

SIGWEB Newsletter Autumn 2024



6 · Ruben Taelman et al

3.3 Handling API heterogeneity

The requirement of handling heterogeneous APIs has seen very limited attention within
research. Within the RDF data model, a formal language [Cheng and Hartig 2020] has been
created, and some works have focused on performance improvements [Heling and Acosta
2022; Montoya et al. 2018], Most of these works however assume prior knowledge of API
capabilities, whereas only limited work has been done on interpreting these capabilities on
the fly [Taelman et al. 2018].

3.4 Handling data model heterogeneity

Handling heterogeneous data models has received some more research attention, such as
code-generation based approaches [Karpathiotakis et al. 2016] and schema alignment tech-
niques [Kifer 2008]. The main open problem here lies in how to efficiently apply these
alignment techniques to incomplete and partial data, which are being discovered on the fly.

3.5 Authentication

Various techniques for querying while taking into account authentication and authoriza-
tion have been investigated [De Capitani di Vimercati et al. 2011; Gabillon and Letouzey
2010; Capadisli 2022]. As such, what remains for this requirement are mainly concrete
implementations.

3.6 Personalized configuration

In order to provide trust and control to users, there is a need for query engines to be con-
figurable. There has been a vast amount of research around personal recommendation
systems [Ko et al. 2022] to enable users to prefer certain data sources or query results over
others. Furthermore, techniques that model browsing behaviour [Park and Fader 2004]
may help to guide discovery and optimize caching within query engines [Eschauzier 2024].

3.7 User-perceived performance

Performance has been one of the primary concerns within query optimization research.
Most of this research focuses on reducing total query execution time, which measures the
time it takes from the start of execution, until the final result is produced. This metric can
be too strict for measuring the user-perceived performance, since the display of content
placeholders or partial results can desire user needs even before results are complete [Se-
brechts 2019]. As such, more work is needed into not just optimizing total query execution
time, but also enabling partial and early results [Acosta et al. 2017].

3.8 Introspection of results

Enabling trust and result audit can be achieved through exposing provenance trails of how
query results came to be. Unfortunately, this area of research has received little research
attention. Current techniques focus on query rewriting approaches [Hernández et al. 2021],
but native support in query engines is lacking.
SIGWEB Newsletter Autumn 2024



Towards Applications on the Decentralized Web using Hypermedia-driven Query Engines · 7

4. CONCLUSIONS

Reusable query engines can help reducing development effort and time for applications
over decentralized data. Due to the radical shift in how data needs to be processed com-
pared to centralized applications, specific requirements arise, which are not fully met to-
day as shown in this article. While several systems have been introduced that meet partial
requirements [Taelman et al. 2018; Taelman and Verborgh 2023; Ragab et al. 2023; Van-
denbrande et al. 2023], none of these systems offer full solutions [Taelman 2024].

In the future, we foresee query engines playing a significant role in the decentralization
ecosystem. For user-facing browser-based application, browser-specific and highly per-
sonalizable query engines can be built in, which may be exposed through a standardized
Web browser API. For user-facing browserless and non-interactive applications, query en-
gines may be available through open and commercial libraries, some of which could even
be derived from browser engines, similar to how many server-side JavaScript runtime en-
vironments such as Node.js and Deno are based on browser engines. Even for recent ad-
vances in Generative AI, these query engines provide significant value in terms of accuracy
and trustworthiness through RAG-based techniques [Lewis et al. 2020].

ACKNOWLEDGMENTS

This research was supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF
project VV023/10). Ruben Taelman is a postdoctoral fellow of the Research Foundation –
Flanders (FWO) (1202124N).

REFERENCES

ACOSTA, M., VIDAL, M.-E., AND SURE-VETTER, Y. 2017. Diefficiency metrics: measuring the continuous
efficiency of query processing approaches. In International Semantic Web Conference. Springer, 3–19.

BERNERS-LEE, T. 2009. Linked data. Design Issues.
BERNERS-LEE, T. J. 1989. Information management: A proposal. Tech. rep.
BLUESKY. 2023. Bluesky. URL: https://blueskyweb.xyz/.
BRICKLEY, D. AND MILLER, L. 2018. Foaf (friend of a friend). URL: www.foaf-project.org.
CAPADISLI, S. 2022. Web access control. Editor’s draft, Solid. July.
CHENG, S. AND HARTIG, O. 2020. Fedqpl: A language for logical query plans over heterogeneous federations

of rdf data sources. In Proceedings of the 22nd International Conference on Information Integration and
Web-based Applications & Services. 436–445.

CRUM, E., TAELMAN, R., BUELENS, B., ERTAYLAN, G., AND VERBORGH, R. 2024. Personalized medicine
through personal data pods. In Proceedings of the 15th International SWAT4HCLS Conference.

CYGANIAK, R., WOOD, D., AND LANTHALER, M. 2014. Rdf 1.1: Concepts and abstract syntax. Recommen-
dation, W3C. Feb.

DE CAPITANI DI VIMERCATI, S., FORESTI, S., JAJODIA, S., PARABOSCHI, S., AND SAMARATI, P. 2011.
Authorization enforcement in distributed query evaluation. Journal of Computer Security 19, 4, 751–794.

DEUTSCH, A., FRANCIS, N., GREEN, A., HARE, K., LI, B., LIBKIN, L., LINDAAKER, T., MARSAULT, V.,
MARTENS, W., MICHELS, J., ET AL. 2022. Graph pattern matching in gql and sql/pgq. In Proceedings of the
2022 International Conference on Management of Data. 2246–2258.

ESCHAUZIER, R. 2024. Personalized query engine optimization for link traversal-based query processing over
structured decentralized environments. In European Semantic Web Conference. Springer.

ESCHAUZIER, R., TAELMAN, R., AND VERBORGH, R. 2023. How does the link queue evolve during traversal-
based query processing? In Proceedings of the 7th International Workshop on Storing, Querying and Bench-
marking Knowledge Graphs.

SIGWEB Newsletter Autumn 2024



8 · Ruben Taelman et al

FEIGENBAUM, L., TODD WILLIAMS, G., GRANT CLARK, K., AND TORRES, E. 2013. SPARQL 1.1 protocol.
Rec., W3C. Mar.

FOUNDATION, T. G. Graphql. october 2021 edition.
FRANCIS, N., GREEN, A., GUAGLIARDO, P., LIBKIN, L., LINDAAKER, T., MARSAULT, V., PLANTIKOW,

S., RYDBERG, M., SELMER, P., AND TAYLOR, A. 2018. Cypher: An evolving query language for property
graphs. In Proceedings of the 2018 international conference on management of data. 1433–1445.

GABILLON, A. AND LETOUZEY, L. 2010. A view based access control model for sparql. In 2010 Fourth
International Conference on Network and System Security. IEEE, 105–112.

HANSKI, J. 2023. Optimisation of link traversal query processing over distributed linked data through adaptive
techniques. In European Semantic Web Conference. Springer, 266–276.

HARRIS, S., SEABORNE, A., AND PRUD’HOMMEAUX, E. 2013. SPARQL 1.1 query language. Recommenda-
tion, W3C. Mar.

HARTIG, O. 2013. An overview on execution strategies for linked data queries. Datenbank-Spektrum 13, 2,
89–99.

HELING, L. AND ACOSTA, M. 2022. Federated sparql query processing over heterogeneous linked data frag-
ments. In Proceedings of the ACM Web Conference 2022. 1047–1057.

HERNÁNDEZ, D., GALÁRRAGA, L., AND HOSE, K. 2021. Computing how-provenance for sparql queries via
query rewriting. Proceedings of the VLDB Endowment 14, 13, 3389–3401.

KARPATHIOTAKIS, M., ALAGIANNIS, I., AND AILAMAKI, A. 2016. Fast queries over heterogeneous data
through engine customization. Proceedings of the VLDB Endowment 9, 12, 972–983.

KIFER, M. 2008. Rule interchange format: The framework. In International Conference on Web Reasoning and
Rule Systems. Springer, 1–11.

KO, H., LEE, S., PARK, Y., AND CHOI, A. 2022. A survey of recommendation systems: recommendation
models, techniques, and application fields. Electronics 11, 1, 141.

LANTHALER, M. AND GÜTL, C. 2013. Hydra: A vocabulary for hypermedia-driven Web apis. In Proceedings
of the 6th Workshop on Linked Data on the Web.

LEWIS, P., PEREZ, E., PIKTUS, A., PETRONI, F., KARPUKHIN, V., GOYAL, N., KÜTTLER, H., LEWIS, M.,
YIH, W.-T., ROCKTÄSCHEL, T., ET AL. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33, 9459–9474.

MENDELZON, A. O., MIHAILA, G. A., AND MILO, T. 1996. Querying the world wide web. In Fourth Inter-
national Conference on Parallel and Distributed Information Systems. IEEE, 80–91.

MONTOYA, G., AEBELOE, C., AND HOSE, K. 2018. Towards efficient query processing over heterogeneous
rdf interfaces. In 2nd Workshop on Decentralizing the Semantic Web, DeSemWeb 2018. CEUR Workshop
Proceedings.

NIELSEN, J. 1993. Response times: the three important limits. Usability Engineering.
PARK, Y.-H. AND FADER, P. S. 2004. Modeling browsing behavior at multiple websites. Marketing Sci-

ence 23, 3, 280–303.
RAGAB, M., SAVATEEV, Y., MOOSAEI, R., TIROPANIS, T., POULOVASSILIS, A., CHAPMAN, A., AND ROUS-

SOS, G. 2023. Espresso: A framework for empowering search on decentralized web. In International Confer-
ence on Web Information Systems Engineering. Springer, 360–375.

RODRIGUEZ, M. A. AND NEUBAUER, P. 2010. Constructions from dots and lines. arXiv preprint
arXiv:1006.2361.

SCHWARTE, A., HAASE, P., HOSE, K., SCHENKEL, R., AND SCHMIDT, M. 2011. Fedx: Optimization tech-
niques for federated query processing on linked data. In International semantic web conference. Springer,
601–616.

SEBRECHTS, I. 2019. Usability of distributed data sources for modern web applications.
TAELMAN, R. 2024. Requirements and challenges for query execution across decentralized environments. In

Companion Proceedings of the ACM Web Conference 2024.
TAELMAN, R., VAN HERWEGEN, J., VANDER SANDE, M., AND VERBORGH, R. 2018. Comunica: a modular

sparql query engine for the web. In Proceedings of the 17th International Semantic Web Conference.
TAELMAN, R. AND VERBORGH, R. 2023. Link traversal query processing over decentralized environments

with structural assumptions. In Proceedings of the 22nd International Semantic Web Conference.

SIGWEB Newsletter Autumn 2024



Towards Applications on the Decentralized Web using Hypermedia-driven Query Engines · 9

TAM, B.-E. 2023. Introducing collaborative link traversal query processing in the context of structured decen-
tralized environments. In ISWC2023, the International Semantic Web Conference.

VANDENBRANDE, M., JAKUBOWSKI, M., BONTE, P., BUELENS, B., ONGENAE, F., AND VAN DEN BUSSCHE,
J. 2023. Pod-query: Schema mapping and query rewriting for solid pods. In ISWC2023, the International
Semantic Web Conference.

VERBORGH, R. 2022. Re-decentralizing the Web, for good this time. In Linking the World’s Information: A
Collection of Essays on the Work of Sir Tim Berners-Lee, O. Seneviratne and J. Hendler, Eds. ACM.

VERBORGH, R. AND TAELMAN, R. 2020. LDflex: a read/write Linked Data abstraction for front-end Web
developers. In Proceedings of the 19th International Semantic Web Conference.

ZIGNANI, M., GAITO, S., AND ROSSI, G. P. 2018. Follow the mastodon: Structure and evolution of a decen-
tralized online social network. In Twelfth International AAAI Conference on Web and Social Media.

Ruben Taelman is a Postdoctoral Researcher at IDLab, Ghent University – imec, Belgium. His research concerns
the decentralized publication and querying of Linked Data on the Web, and investigating the trade-offs that exist
between server and client. Next to that, he is actively applying his research by developing reusable software that
can be used by developers and other researchers.

SIGWEB Newsletter Autumn 2024


