
Observations on Bloom Filters for Traversal-Based
Query Execution over Solid Pods

Jonni Hanski, Ruben Taelman, and Ruben Verborgh

IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract. Traversal-based query execution enables the resolving of
queries over Linked Data documents, using a follow-your-nose approach
to locating query-relevant data by following series of links through docu-
ments. This traversal, however, incurs an unavoidable overhead in the form
of data access costs. Through only following links known to be relevant
for answering a given query, this overhead could be minimized. Prior
work exists in the form of reachability conditions to determine the links
to dereference, however this does not take into consideration the contents
behind a given link. Within this work, we have explored the possibility
of using Bloom filters to prune query-irrelevant links based on the triple
patterns contained within a given query, when performing traversal-based
query execution over Solid pods containing simulated social network data
as an example use case. Our discoveries show that, with relatively uniform
data across an entire benchmark dataset, this approach fails to effectively
filter links, especially when the queries contain triple patterns with low
selectivity. Thus, future work should consider the query plan beyond
individual patterns, or the structure of the data beyond individual triples,
to allow for more effective pruning of links.

1 Introduction

the traversal-based approach to query execution [7] builds upon the Linked Data
principles [2] by offering a formally defined foundation for executing queries
over such data [7]. This approach to query execution essentially functions by
following directed data links between documents, integrating data discovery with
query execution. Within a given reachable subweb of Linked Data documents
and the data contained therein, bounded by the chosen reachability-based query
semantics, this approach provides a computationally feasible means of executing
queries while guaranteeing termination and completeness [6]. However, while this
reachable subweb does provide bounds for the set of documents to consider via
the reachability conditions set forth by the reachability-based query semantics,
depending on the chosen conditions, not all of these documents may contain
data relevant for answering a given query or even links to other documents
that would satisfy the conditions. Therefore, potential to further restrict these
reachability conditions may exist, by requiring the linked documents to contain
either query-relevant data or further links satisfying the original conditions,
provided sufficient knowledge of the data contained behind a given link is available,
which is the direction we have chosen to pursue within this work.

2 J. Hanski et al.

2 Methodology

Within this work, we have chosen to explore the extension of reachability conditions
to filter data links based on the contents of the documents they link to. Essentially,
the reachability-based semantics [6] restrict the scope of queries to a reachable
subweb of Linked Data documents, where reachable documents are those that can
be discovered by following chains of links that meet the reachability conditions,
starting from the initial set of URIs either provided explicitly or extracted
from the query itself. This restriction facilitates computability not attainable
under full-Web semantics, without having to introduce purpose-built termination
mechanisms that might result in nondeterministic execution [6]. the original
authors present three reachability criteria: cAll, cNone and cMatch [6]. Essentially,
cAll follows all data links, cNone follows no links at all, and cMatch follows links
conditionally. With cNone having no further room for restrictions in traversal, we
focused on cMatch, though cAll would also have worked.

We have conceptually extended this criterion to further restrict the data links
considered for traversal, by including the use of Bloom filters to check whether
the document identified by a given URI contains potentially query-relevant data or
further links matching the criterion. Bloom filter is a probabilistic data structure,
that may produce false positives but never false negatives [3], making it suitable
for this purpose by not facilitating the accidental pruning of links that could point
to query-relevant data. the filter is essentially an array of bits with a specified
length, and entries to it are added by hashing the input into another array of
bits of the same length and taking a bitwise OR. Testing whether a filter contains
a specific value works by hashing the input and doing a bitwise AND.

Following the RDF schema [4], an RDF statement – a triple – consists of
resources, properties and literals. Resources may appear as the subject or object
of a statement, properties as the predicate, and literals as the object. Within
this work, we ignored literals due to their versatility with regards to languages
and datatypes, as well as blank node identifiers of resources due to potentially
different means of generating or skolemizing them. This left us with globally
unique URI identifiers for resources and properties, for which we will generate our
Bloom filters. Through the reuse of an existing membership filter vocabulary1,
we can define a Bloom filter as a combination of a dataset URI, a projected
property or projected resource, and the filter itself, where a property or resource
is a globally unique URI identifier of either.

Essentially, a Bloom filter defined this way offers the means to check whether
a given property or resource URI occurs within the same triples together with
another property or resource URI. Inspired by cMatch, for each data link u, if
there exist Bloom filters generated for the dataset it is part of based on URI
prefixes, we check whether any combination of property or resource URIs in
the triple patterns in the query could be found in the dataset. Only if applicable
filters exist, and only if all such filters reject every triple pattern in the query,
can we reject the data link u. Otherwise, this link is accepted.

1 http://semweb.mmlab.be/ns/membership

Bloom Filters for Traversal-Based Query Execution over Solid Pods 3

3 Experiments

Following the example set by prior evaluations of traversal-based query execu-
tion [9], we have chosen to evaluate our approach to Bloom filters using Solid-
Bench2, an adaptation of the LDBC social network benchmark [5] for the Solid
initiative [10]. Within the scope of this work, we have integrated the generation of
Bloom filters into the benchmark dataset preprocessing tool3, and implemented
the discovery and use of these filters in Comunica [8], a query engine framework
also used in prior work on traversal-based query execution, as a set of addi-
tional components. Both the query engine components4 and the experiments
themselves5 are available online for reproducibility.

For the purposes of evaluating the impact of Bloom filters, the following test
cases were considered: i) no filters as the baseline for comparison, ii) per-pod
filters generated for the full contents of a given Solid pod, iii) per-subdirectory
filters generated for each subdirectory within a pod, and iv) per-document filters
generated for each document. Within all the test cases, the filters were placed
at the pod root for discovery prior to dereferencing individual subdirectories or
documents. the experiments were executed by having both the Solid server to
serve the data and the query engine to query it on the same machine. the main
purpose of the experiments was to measure the differences in network request
counts when using Bloom filters.

4 Observations

Initial results in Table 1 show the Bloom filters fail to prune any links, and their
inclusion appears to unintentionally cause more links to be dereferenced, likely
due to the URIs in filter metadata triples being picked by cMatch to the link
queue. the average time taken to produce the first and the last result, as well as
the combined diefficiency [1] value are also not significantly different.

Upon further analysis of the benchmark dataset and the queries, detailed
in Table 2, this ineffective filtering appears to be caused by a handful of triple
patterns matching most of the pods and documents, simply by virtue of the data
being relatively uniform and merely distributed across a number of similarly
structured documents and pods. For example, the worst offender in the form
of ?s ldbc:hasCreator ?o is found in 100% of the pods, and in 96% of all
the documents, causing all queries with this pattern to not exclude any links
in practice, even though a mere 2.5% of all triples match this pattern. Even
if this were somehow addressed, additional manual tests using cAll instead of
cMatch revealed no difference with a number of example queries, as the benchmark
dataset mostly links to itself and is relatively uniform.

2 https://github.com/SolidBench/SolidBench.js
3 https://github.com/SolidBench/rdf-dataset-fragmenter.js
4 https://github.com/surilindur/comunica-components
5 https://github.com/surilindur/comunica-experiments

4 J. Hanski et al.

Filter scope Queries Requests tfirst (s) ∆tfirst tlast (s) ∆tlast ∆ dieff@full
1. no filters 25 / 75 1,047 2.69 0.00 % 3.06 0.00 % 0.00 %
2. per-pod 27 / 75 1,062 2.73 +1.49 % 3.02 -1.31 % -10.18 %
3. per-subdir 26 / 75 1,062 2.75 +2.23 % 3.03 -0.98 % -4.02 %
4. per-document 26 / 75 1,062 2.87 +6.69 % 3.13 +2.29 % -4.10 %

Table 1. Overview of initial benchmark results for different Bloom filter configurations.
the combined total HTTP request count and diefficiency values to produce all results
(dieff@full), as well as the average time to produce the first (tfirst) and last (tlast)
result, are taken only for the common 10 queries that succeeded for all configurations.

5 Conclusions

Within this work, we have explored the use of Bloom filters for pruning query-
irrelevant data links during traversal-based query execution over the SolidBench
benchmarking dataset. Unfortunately, due to the relatively uniform nature of
data contained within the benchmark and the type of triple patterns found in
the associated queries, the chosen method of generating Bloom filters at triple
level appears ineffective in pruning links. This leads us to conclude that the triple-
level information on the co-occurrence of specific URIs, contained within Bloom
filters as implemented within this work, is insufficient for pruning links when
combined with triple patterns that have too many variables or when the data
behind the majority of links partially matches the sought-after data. Thus, we
believe triple patterns with fewer variables should be looked into for filtering,
perhaps by taking into consideration the patterns’ positions in the query plan,
or by testing links against intermediate results rather than raw triple patterns,
to the extent possible without unintentionally excluding query-relevant data.
Additionally, approaches that capture both the data shape beyond individual
triples and query structure beyond individual triple patterns should likely be
investigated for more efficient filtering.

Acknowledgements. The described research activities were supported by
SolidLab Vlaanderen (Flemish Government, EWI and RRF project VV023/10).
Ruben Taelman is a postdoctoral fellow of the Research Foundation – Flanders
(FWO) (1202124N).

References

1. Acosta, M., Vidal, M.E., Sure-Vetter, Y.: Diefficiency metrics: measuring the
continuous efficiency of query processing approaches. In: The Semantic Web–ISWC
2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25,
2017, Proceedings, Part II 16. pp. 3–19. Springer (2017)

2. Berners-Lee, T.: Linked data - design issues (2006), http://www.w3.org/
DesignIssues/LinkedData.html

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

Bloom Filters for Traversal-Based Query Execution over Solid Pods 5

Pattern Queries Pods Documents Triples
1. ?s ldbc:hasCreator ?o 20.00 % 100.00 % 96.22 % 2.49 %
2. ?s ldbc:creationDate ?o 33.33 % 100.00 % 84.71 % 3.39 %
3. ?s ldbc:id ?o 60.00 % 100.00 % 84.71 % 2.37 %
4. ?s ldbc:isLocatedIn ?o 6.67 % 100.00 % 84.71 % 2.37 %
5. ?s ldbc:locationIP ?o 6.67 % 100.00 % 84.71 % 2.37 %
6. ?s ldbc:firstName ?o 40.00 % 100.00 % 1.28 % 0.01 %
7. ?s ldbc:lastName ?o 40.00 % 100.00 % 1.28 % 0.01 %
8. ?s (ldbc:content|ldbc:imageFile) ?o 6.67 % 95.62 % 83.43 % 2.36 %
9. ?s (ldbc:hasPost|ldbc:hasComment) ?o 6.67 % 94.24 % 1.21 % 0.90 %

10. ?s ldbc:content ?o 26.67 % 92.15 % 54.44 % 1.37 %
11. ?s ldbc:replyOf* ?o 6.67 % 91.62 % 48.48 % 1.24 %
12. ?s rdf:type ldbc:Comment 20.00 % 91.62 % 48.48 % 1.24 %
13. ?s ldbc:hasTag ?o 6.67 % 88.68 % 24.58 % 2.00 %
14. ?s rdf:type ldbc:Post 26.67 % 88.15 % 34.95 % 1.12 %
15. ?s ldbc:hasPerson ?o 6.67 % 78.47 % 1.00 % 0.12 %
16. ?s ldbc:knows ?o 6.67 % 78.47 % 1.00 % 0.12 %
17. ?s ldbc:hasPerson <http://.../pods/00000006597069767117/profile/card#me> 1.33 % 0.20 % 0.00 % 0.00 %
18. ?s ldbc:hasCreator <http://.../pods/00000004398046512167/profile/card#me> 10.67 % 0.07 % 0.18 % 0.00 %
19. ?s ldbc:hasCreator <http://.../pods/00000006597069767117/profile/card#me> 10.67 % 0.07 % 0.07 % 0.00 %
20. ?s ldbc:hasCreator <http://.../pods/00000000000000000933/profile/card#me> 10.67 % 0.07 % 0.07 % 0.00 %
21. ?s ldbc:hasCreator <http://.../pods/00000000000000001129/profile/card#me> 10.67 % 0.07 % 0.01 % 0.00 %
22. ?s ldbc:hasCreator <http://.../pods/00000002199023256684/profile/card#me> 10.67 % 0.07 % 0.01 % 0.00 %
23. <http://.../pods/00000004398046512167/profile/card#me> ldbc:likes ?o 1.33 % 0.07 % 0.00 % 0.00 %
24. <http://.../pods/00000006597069767117/profile/card#me> ldbc:likes ?o 1.33 % 0.07 % 0.00 % 0.00 %
25. <http://.../pods/00000000000000001129/profile/card#me> ldbc:likes ?o 1.33 % 0.07 % 0.00 % 0.00 %
26. <http://.../pods/00000000000000000933/profile/card#me> ldbc:likes ?o 1.33 % 0.07 % 0.00 % 0.00 %
27. <http://.../pods/00000002199023256684/profile/card#me> ldbc:likes ?o 1.33 % 0.07 % 0.00 % 0.00 %

...
141. <http://.../pods/00000015393162789111/posts#893353506423> ldbc:replyOf* ?o 1.33 % 0.00 % 0.00 % 0.00 %

Table 2. When looking at the data stored in Solid pods in the SolidBench benchmark,
and comparing it against individual triple patterns in instantiated queries without
taking traversal or query planning into consideration, 16 patterns out of 141 match
most of the pods, while the remaining patterns match ≤ 0.20% of all pods each. These
16 patterns are also found in a considerable share of the queries.

4. Brickley, D., Guha, R.: Rdf schema 1.1. W3C recommendation, W3C (Feb 2014),
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

5. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,
M.D., Boncz, P.: The ldbc social network benchmark: Interactive workload. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. pp. 619–630 (2015)

6. Hartig, O.: Sparql for a web of linked data: Semantics and computability. In:
Extended Semantic Web Conference. pp. 8–23. Springer (2012)

7. Hartig, O., Freytag, J.C.: Foundations of traversal based query execution over
linked data. In: Proceedings of the 23rd ACM conference on Hypertext and social
media. pp. 43–52 (2012)

8. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: A
Modular SPARQL Query Engine for the Web. In: Proceedings of the 17th Interna-
tional Semantic Web Conference. pp. 239–255. Springer International Publishing
(Oct 2018). https://doi.org/10.1007/978-3-030-00668-6_15

9. Taelman, R., Verborgh, R.: Link traversal query processing over decentralized envi-
ronments with structural assumptions. In: International Semantic Web Conference.
pp. 3–22. Springer (2023)

10. Verborgh, R.: Re-decentralizing the web, for good this time. In: Linking the World’s
Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web, pp.
215–230 (2023)

https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1007/978-3-030-00668-6_15

	Observations on Bloom Filters for Traversal-Based Query Execution over Solid Pods

