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Summary

This dissertation investigates the possibilities of having continuously updating queries
over Linked Data with a focus on server availability. This work builds upon the ideas of
Linked Data Fragments to let the clients do most of the work when executing a query.
The server adds metadata to make the clients aware of the data volatility for making
sure the query results are always up-to-date. The implementation of the framework
that is proposed, is eventually tested and compared to other alternative approaches.

Samenvatting

Deze masterthesis onderzoekt de mogelijkheiden voor continue bevraving over Linked
Data met een focus op de beschikbaarheid van de server. Dit werk bouwt verder op
de concepten van Linked Data Fragments om de clients het meeste werk te laten doen
voor de eigenlijke bevraging. De server voegt metadata toe om de clients op de hoogte
te houden van de veranderbaarheid van de data om te zorgen dat de resultaten van
de bevraging altijd hernieuwd worden. De implementatie van het raamwerk die hier
voorgesteld is, wordt uiteindelijk getest en vergeleken met alternatieve oplossingen voor
dit probleem.
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Abstract— This paper investigates the possibilities of having continu-
ously updating queries over Linked Data with a focus on server availabil-
ity. This work builds upon the ideas of Linked Data Fragments to let the
client do most of the work for executing the query. The server adds meta-
data to make clients aware of the data volatility ensuring the query results
are always up-to-date. The implementation of the framework that is pro-
posed is tested and compared to other alternative approaches.
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I. INTRODUCTION

INFORMATION is becoming more important each day. A
lot of smart clients use HTTP to keep us up-to-date with

everything we need to know. Some of this information requires
real-time updates, like for example the information on the cur-
rent train departure delays.

Linked Data [1] provides a basis for this flexible information
representation and retrieval. The main problem with traditional
query endpoints in this framework is low availability, which is
at least partially caused by clients that can execute queries of
unbounded complexity against them. Triple Pattern Fragments
[2] provide a solution for this by moving part of the query exe-
cution to the client itself. In this work, we build upon that idea
to research a solution that enables clients to execute continu-
ously updating queries. We do this without the server needing
to remember any states of the clients or pushing results to them.
This requires the server to somehow annotate its data so that
the client can efficiently determine when to pull new data.

After this section, the relevant related work will be discussed.
After that, several methods for representing dynamic data will
be explained, after which our complete solution is presented.
Next, a use case will be explained on which the experiments
are based, these results are presented thereafter. Finally, some
concluding remarks will be made, together with some possible
future work.

II. RELATED WORK

A. Linked Data

The Semantic Web [3] is the collection of technologies for
having machine-accessible data of which Linked Data [1, 3]
is the initiative for improving these data formats for machines.
This framework consists of a stack of semantic web technolo-
gies. RDF [4] provides a graph-based data model that is based
on triples to structure data and interlink it. SPARQL [5, 6] is a
language and protocol to query RDF data stores by targeting
queries to SPARQL endpoints for execution. These queries
are in fact graph patterns on which pattern matching is done
to retrieve the matching data for the variables inside the graph
patterns.

B. RDF Annotations

Metadata is used in cases where additional information about
certain data is required. This metadata can be used to annotate
triples [7] with temporal information, for example to indicate
the data volatility [8].

There are several possible approaches to perform this data
annotation. a) Reification [7] was the main method of anno-
tation before RDF 1.1 [9], annotation in this way works by
transforming a triple into a reified triple on which annotations
can be added. But because of the large triple overhead b) Sin-
gleton Properties were introduced which are based on the idea
of instantiating predicates so that they can be annotated. With
the introduction of RDF 1.1, c) Graphs [9] could be used to
annotate a context of one or more triples. The concept of graphs
was standardized already by SPARQL [6] before RDF 1.1.

We investigated two different mechanisms to add time in-
formation to RDF [10, 11]: versioning and time labeling. The
former requires snapshots of the complete graph to be taken
every time a change in the data occurs, while the latter simply
annotates triples with their change time. Time labeling is con-
sidered more extensible and introduces less overhead. A further
distinction [11] was made between point-based and interval-
based time labeling. Interval-based labeling is used in scenarios
where multiple time ranges can each have a different value for
a given fact in one dataset. Point-based labeling is used to indi-
cate the time at which the single available fact version is valid,
this can either indicate the start or end time of the validity.

A temporal vocabulary [10] was introduced which is capa-
ble of representing both interval-based and point-based time
labeling. This vocabulary will be referred to as tmp.

An example of equivalent time-annotated triples using the
three annotation approaches using the time vocabulary tmp in
the Turtle [12] format can be found in respectively Listings 1, 2
and 3.

_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http://me.example.org/> ;
tmp:interval [ tmp:initial

"2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final
"2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 1 : A time-annotated triple using reification [7] representing the
valid time in an interval-based representation.

:me foaf:workplaceHomepage <http://me.example.org/> _:c .
_:c tmp:interval [ tmp:initial

"2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final
"2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 2 : A time-annotated triple using graphs in the N-Quads [13] format.

foaf:workplaceHomepage#1 sp:singletonPropertyOf foaf:
workplaceHomepage .

:me foaf:workplaceHomepage#1 <http://me.example.org/> .
foaf:workplaceHomepage#1 tmp:interval [



tmp:initial "2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final "2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 3 : A time-annotated triple using Singleton Properties [14] .

C. Stream Reasoning

Performing continuous queries over RDF data streams re-
quires some concepts of Stream Reasoning [15, 16] which is
in fact a version of Stream Processing in the context of Linked
Data. This area of research integrates data streams with tra-
ditional RDF reasoners. A window [17] is a subsect of facts
ordered by time so that not all available information has to be
taken into account while reasoning. These windows can have
a certain size which indicates the time range and is advanced
in time by a stepsize. The term Continuous Processing [15] is
used to refer to the continuous processing life cycle for con-
tinuously evaluating queries over constantly changing data as
opposed to the traditional reasoning which has a specific start
and endpoint. Because of this continuous processing, Query
Registration [15, 16] must occur by clients to make sure that
the streaming-enabled SPARQL endpoint can continuously re-
evaluate this query, as opposed to traditional endpoints where
the query is only evaluated once. Triples can receive times-
tamps. This can be done by annotating triples [18] with a new
tuple structure that contains a timestamp T on which the tuple is
valid. This results in a stream of monotonically non-decreasing
triples. A formal representation of an RDF stream using these
timestamps T can be found in Equation 1.
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D. SPARQL Streaming Extensions

C-SPARQL [19] is a first existing approach to querying over
static and dynamic data. This system requires the client to
register a query in an extended SPARQL syntax which allows
the use of windows over dynamic data. The execution of queries
is based on the combination of a traditional SPARQL engine
with a Data Stream Management System (DSMS) [17]. The
internal model of C-SPARQL internally creates queries that
distribute work between the DSMS and the SPARQL engine to
respectively process the dynamic and static data.

CQELS [20] is a “white box” approach, as opposed to
the “black box” approaches like C-SPARQL. This means that
CQELS natively implements all query operators without trans-
forming it to another language so that it can be delegated to
another system, which removes this overhead. The syntax is
very similar as to that of C-SPARQL, also supporting query
registration and time windows. According to previous research
[20], this approach performs much better than C-SPARQL for
large datasets, for simple queries and small datasets the opposite
is true.

E. Triple Pattern Fragments

Experiments [21] have shown that only 30% of public end-
points reach an availability of 99%. The main cause of this low
availability is the unrestricted complexity of SPARQL queries
combined with the public character of SPARQL endpoints.

Clients can send arbitrarily complex SPARQL queries which
can form a bottleneck in endpoints. Triple Pattern Fragments
[2] aim to solve this issue of low availability and performance
of existing SPARQL endpoints. It does this by moving part
of the query processing to the client, which reduces the server
load at the cost of increased data transfer. The endpoints are
limited to an interface in which only separate triple patterns can
be queried instead of full SPARQL queries. The client is then
responsible for carrying out the remaining work.

III. DYNAMIC DATA REPRESENTATION

In this work, both the interval-based and point-based time
labeling are used, these are referred to as the temporal domains.
Interval-based labeling is used to indicate the start and endpoint
of the time in which triples are valid. Point-based labeling is
used to indicate the expiration times of triple validity.

With expiration times, only one version of a given fact can
exist in a dataset at the same time because we do not have
knowledge about the start time of the validity for distinguishing
multiple versions. For time intervals, multiple versions of a
fact can exist. When data is very volatile, consecutive interval-
based facts will accumulate quickly. If no techniques are used
to aggregate or remove old data, datasets will quickly grow
which can cause continuously slower query executions. This
problem does not exist with expiration times because only the
latest version of a fact can exist, so this volatility will not have
any effect on the dataset size.

Reification, singleton properties and graphs are methods to
add these expiration times or time intervals. Since our solution
is built on Triple Pattern Fragments, these fragments can be used
as an alternative to graphs to represent a context over triples,
which we will refer to as implicit graphs. These implicit graphs
are also different from the three alternatives in that sense that
this does not require altering the structure of the original data
when time annotations are added. This means that clients who
do not support the retrieval of this time information can still
without a problem query data annotated with implicit graphs.
When reification, singleton properties or graphs-based annota-
tion are used, these clients will not be able to retrieve this data.
Table I shows an overview comparing these four methods of
annotation in terms of the required amount of triples, whether
or not quad or TPF support is required and if the method still
allows clients who do not support time-annotated queries to
retrieve the dynamic data in a static fashion.

IV. SOLUTION

Our solution consists of an extra software layer on top of
the existing Triple Pattern Fragments client. The Triple Pattern
Fragments server does not require any changes, the only require-
ment is that the dynamic data must be time annotated with one
of the possible combinations of temporal domain and method
of annotation. This dynamic data should then be updated by an
external process according to its temporal range, indicated by
either expiration times or time intervals.

Figure 1 shows an overview of the architecture for this extra
layer on top of the TPF client, which will be called the Query
Streamer from now on. The top of the diagram shows the client
that can send a regular SPARQL query to the Query Streamer
and receives a stream of query results. The Query Streamer can
execute queries through the local Basic Graph Iterator which
is part of the TPF client and can execute queries against a TPF
server.



Triple-count Quads TPF Backwards compatible

Reification
f
R interval

(t) = 5 ⇤ t
f
R expiration

(t) = 4 ⇤ t
f
R interval better

(t) = 4 ⇤ t+ 2

no no no

Singleton Properties
f
SP interval

(t) = t+ 3

f
SP expiration

(t) = t+ 2
no no no

Explicit Graphs
f
EG interval

(t) = t+ 2

f
EG expiration

(t) = t+ 1
required no no

Implicit Graphs
f
IG interval

(t) = t+ 2

f
IG expiration

(t) = t+ 1
no yes yes

TA B L E I : Overview of the most important characteristics of the different annotation types. The column triple-count contains the triple-count functions in terms
of the original required amount of triples t. Quads indicates whether the annotation type requires the concept of quads. TPF indicates if the annotation type
requires a Triple Pattern Fragments interface. The last column indicates whether or not the annotation type allows regular clients to retrieve the dynamic facts as
static data.

Client

Query Streamer

Rewriter

Streamer

Materializer

Time Filter

Result
Manager

Cache

Basic Graph Iterator

TPF Server

SPARQL query

Metadata query Metadata results

Dynamic query

Static query

Dynamic query Dynamic results

Dynamic results

Delayed call

Materialized
static queries +
Dynamic results

Materialized static
query Materialized static

query results

Static results

Query results

F I G . 1 : Overview of the proposed architecture.

The Query Streamer consists of six major components. First,
there is the Rewriter module which is executed only once at
the start of the query stream. This module is able to transform
the original input query to a static and a dynamic query which
will respectively retrieve the static background data and the
time-annotated changing data. This transformation happens by
querying metadata of the triple patterns against the endpoint
through the local TPF client. The Streamer module takes this
dynamic query and initiates the streaming loop by executing
this dynamic query and forwarding its results to the Time Fil-
ter. The Time Filter checks the time annotation for each of the
results and throws out those that are not valid for the current
time. The minimal expiration time of all these results is then
determined and used as a delayed call to the Streamer mod-
ule, this will make sure that when at least one of the results
expire, a new set of results will be fetched. The filtered dy-
namic results will be passed on to the Materializer which is
responsible for creating a materialized static query. This is
a transformation of the static query with the dynamic results
filled in. This materialized static query is passed to the Result
Manager which is able to cache these queries by using the so-
called graph-connection between the static and dynamic query
as identifier. This graph-connection is nothing more than the
intersection of all the variables in the WHERE clauses of the

t:delay
t:platform

t:headSign t:routeLabel

t:departureTime

Departure

Delay Platform

Headsign Route Label

Departuretime

F I G . 2 : Basic data model for representing train departures in one train station.
The nodes in dark grey refer to dynamic data while the others are static.

static and dynamic query. Finally, the Result Manager retrieves
previous materialized static query results from the local cache
or executes this query for the first time and stores its results
in the cache. These results are then sent to the client who had
initiated query streaming.

V. USE CASE

The discussed architecture was implemented in JavaScript
using Node.js [22] to allow for easy communication with the
existing TPF client. We have tested our implementation with
the use case of querying train departure information for a certain
station. Figure 2 shows a basic data model for the relevant train
departure information where the light grey nodes refer to static
data and the dark grey nodes refer to dynamic data.

This basic data model has been adapted for each possible
method of annotation. Each of these possibilities can then
again be adapted to add time information for a certain temporal
domain. For example when reification is used as a method
of annotation, the triples ?departure t:delay ?delay
and ?departure t:platform ?platform are reified
and annotated using a temporal domain such as expiration times.
A simple SPARQL query is used to retrieve all information
using this basic data model, this query can be found in Listing 4.
Eventually, there are eight derived data models for each possible
combination of annotation and all of them are compared in terms
of processing time and bandwidth usage.

PREFIX t: <http://example.org/train#>

SELECT DISTINCT ?delay ?headSign ?routeLabel ?platform
?departureTime

WHERE {
_:id t:delay ?delay .
_:id t:headSign ?headSign .
_:id t:routeLabel ?routeLabel .
_:id t:platform ?platform .



_:id t:departureTime ?departureTime .
}

L I S T I N G 4 : The basic SPARQL query for retrieving all train departure
information.

Next to this, we also set up an experiment to measure the
client and server performance. This experiment was made up
of one server and ten physical clients. Each of these clients
can execute from one to ten concurrent unique queries. This
results in a series of 10 to 200 concurrent query executions.
This setup was used to test the client and server performance
of the implementation presented is this work, C-SPARQL [19]
and CQELS [20].

These tests were executed on the Virtual Wall (generation 2)
[23] environment from iMinds. Each machine had two Hexa-
core Intel E5645 (2.4GHz) CPU’s with 24GB RAM and was
running Ubuntu 12.04 LTS. For CQELS, we used the engine
version 1.0.1 [24]. For C-SPARQL, this was version 0.9 [25].
The dataset for this use case consisted of about 300 static triples
and around 200 dynamic triples that were created and removed
each ten seconds.

VI. RESULTS

As can be seen in Figure 3, the first experiment shows that
interval-based annotation has a linear increase in execution time
as the query stream executions advance, opposed to the constant
execution time for when expiration times are used. This behav-
ior was expected and this is the reason why old fact versions
annotated using time intervals should not be kept indefinitely.
Another observation is that reification performs much slower
in all cases, this is because of the large amount of triples that
is require to annotate dynamic facts. For a better comparison
between singleton properties, graphs and implicit graphs using
expiration times, the results from Figure 3 have been rescaled
in Figure 4. It can be seen that graphs and singleton proper-
ties perform the best, with graphs being only slightly better.
Implicit graphs perform a little less well than the two others,
because this approach still requires some further research to
be efficient in practice. It can also be noted that our caching
solution has a very positive effect on the execution times. In an
optimal scenario, caching would lead to a execution reduction
of 60% because three of the five triple patterns in our query
are dynamic. For our results, this caching lead to an average
reduction of 56% (average taken without the reification results)
which is very close to the optimal case.

Figure 5 shows that the primary cause of the difference in
execution times is caused by the amount of data that needs to
be transfered. These results closely resemble the triple-count
functions in Table I for each method of annotation. We can
conclude that the amount of triples required for annotation has
the largest impact on the execution times.

A separate measurement was done for the rewriting phase,
which is executed once at the start of the query streaming by
the Rewriter module. The results in Figure 6 show that im-
plicit graphs are significantly slower. This is because implicit
graphs were defined over triple pattern fragments with deter-
mined triple values. This means that for each triple pattern,
all possible values had to be checked to determine whether or
not the pattern should be considered dynamic. The order of
performance between the other three approaches can again be
explained by the amount of required triples.

From Figures 7a and 7b we can see that our implementa-

( A ) Time intervals without caching. ( B ) Time intervals with caching.

( C ) Expiration times without caching. ( D ) Expiration times with caching.

F I G . 3 : Executions times for all different types of dynamic data representation
for several subsequent streaming requests. The figures show a mostly linear
increase when using time intervals and constant execution times for annotation
using expiration times.

( A ) Expiration times without caching. ( B ) Expiration times with caching.

F I G . 4 : Executions times for all different types of time annotation methods
using expiration times for several subsequent streaming requests. These figures
contain the same data as Figures 3c and 3d, but without the rapidly increasing
reification results in order to reveal the other methods in more detail. They
indicate the graph approach having the lowest execution times.

tion significantly reduces the server load when compared to
C-SPARQL and CQELS, as was the main the goal. We see that
the client now pays for the largest part of the query executions,
which is caused by the use of Triple Pattern Fragments. The
client CPU usage for our implementation spikes at the time of
query initialization because of the rewriting phase, but after that
it drops to around 5%.

VII. CONCLUSION

We have researched and compared different methods for con-
tinuously updating SPARQL queries, together with a solution
based on Triple Pattern Fragments. Our solution proves to sig-
nificantly reduce the server load at an increased bandwidth and
client processing cost.

We have investigated four different methods of annotation,
of which the graph-based approach proved to perform the best
in our experiments. The two temporal domains, time intervals
and expiration times, can be used, of which the latter is the best
solution for very volatile data.

The solution presented in this work only requires an extra
layer on top of the existing TPF client to enable query streaming.
The data that should be seen as dynamic must be annotated with
time information in its dataset.



( A ) The data transfer in bytes using
reification having a total transfer of
36.46 MB over 7924 requests in this
time range.

( B ) The data transfer in bytes using
singleton properties having a total
transfer of 2.57 MB over 627 requests
in this time range.

( C ) The data transfer in bytes using
explicit graphs having a total transfer
of 2.10 MB over 557 requests in this
time range.

( D ) The data transfer in bytes using
implicit graphs having a total transfer
of 6.70 MB over 1191 requests in this
time range.

F I G . 5 : The data transfer in bytes for the four annotation methods for a
duration of 50 seconds. These plots used expiration times with caching disabled.
Reification uses by far the most bandwidth, while the graph approach uses the
least.

F I G . 6 : Histogram of the preprocessing execution times for the different
options for annotation, grouped by annotation method. The graph approach has
the lowest preprocessing execution times. Expiration times are slightly faster
and caching has no significant influence.

( A ) Average client CPU usage for one
query stream for C-SPARQL, CQELS
and the solution presented in this work.
Initially the CPU usage for our imple-
mentation is very high after which is
converges to about 5%. The usage for
C-SPARQL and CQELS is almost non-
existing.

( B ) Average server CPU usage for
an increasing amount of clients for C-
SPARQL, CQELS and the solution pre-
sented in this work. The CPU usage
of this solution proves to be influenced
less by the number of clients. Note that
the test machine had 4 assigned cores.

F I G . 7 : The client and server CPU usages for one query stream for C-SPARQL,
CQELS and the solution presented in this work.

VIII. FUTURE WORK

This research is still just a first approach for enabling contin-
uous querying using Triple Pattern Fragments and many aspects
can still be improved.
• Instead of one static and dynamic query as a result of the
query rewriting, multiple queries could be used with each a
different volatility. This way, more complicated queries with
different dynamic triple patterns can more efficiently be cached
and queried.
• Even though the graph-based method of annotation proved to
be the most efficient in these experiments, implicit graphs could
still be improved on many levels to become even more efficient.
• In this work, we have assumed that the change-times of the
dynamic data was known by the data provider. Determining
expiration times and time intervals might become quite complex
and could require advanced pattern matching algorithms on the
data change history.
• If the TPF client could efficiently add FILTER-support, the
expiration times and time intervals could become much more
efficient to lookup. This could however increase the server load
again.
• As was presented in a similar research [26], static background
data might not remain the same forever. So the client Caching
module should take this into account.
• The results presented here might differ a lot with other use
cases, so similar tests for other query types could produce inter-
esting results. Queries that request more static data would for
example become relatively more efficient.
• If a larger testing environment would be available, these
server and client performance experiments should be executed
for a much larger amount of concurrent clients to determine the
actual limits of the server using this approach.
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Abstract—Deze paper onderzoekt de mogelijkheiden voor continue be-
vraving over Linked Data met een focus op de beschikbaarheid van de ser-
ver. Dit werk bouwt verder op de concepten van Linked Data Fragments
om de clients het meeste werk te laten doen voor de eigenlijke bevraging.
De server voegt metadata toe om de clients op de hoogte te houden van
de veranderbaarheid van de data om te zorgen dat de resultaten van de
bevraging altijd hernieuwd worden. De implementatie van het raamwerk
die hier voorgesteld is, wordt uiteindelijk getest en vergeleken met alter-
natieve oplossingen voor dit probleem.
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I. INTRODUCTIE

INFORMATIE wordt elke dag belangrijker. Veel intelligente
clients gebruiken HTTP om ons up-to-date te houden over

alles wat we nodig hebben. Delen van deze informatie verwach-
ten updates in werkelijke tijd, net als bijvoorbeeld de informatie
over de huidige trein vertragingen.

Linked Data [1] voorziet een basis voor deze flexibele manier
van data representatie en bevraging. Het grootste probleem
met de traditionele query eindpunten in dit raamwerk is de
lage beschikbaarheid, deze is ten minste deels veroorzaakt door
clients die queries van onbeperkte complexiteit hierop kunnen
uitvoeren. Triple Pattern Fragments [2] bieden een oplossing
voor dit probleem door een deel van de query uitvoering te
verplaatsen naar de client-zijde. In dit werk bouwen we verder
op dit idee om een oplossing te vinden die clients toelaat om
continu actualiserende queries uit te voeren. We doen dit zonder
dat de server enige toestand van de clients moet onthouden of
zelf volledige resultaten moet sturen. Hiervoor moet de server
op een of andere manier zijn data annoteren zodat de client op
een efficiënte manier kan bepalen wanneer nieuwe resultaten
opgevraagd moeten worden.

Na deze sectie worden enkele relevante onderzoeken bespro-
ken. Hierna worden enkele methoden uitgelegd waarmee dy-
namische gegevens kunnen worden voorgesteld, waarna onze
volledige oplossing wordt uitgelegd. Als volgende wordt een
use case voorgesteld waarop onze experimenten gebaseerd zijn,
waarvan de resultaten hierna worden gepresenteerd. Tenslotte
worden enkele besluitende opmerkingen gemaakt, samen met
mogelijke opvolgende onderzoeksmogelijkheden.

II. GERELATEERD WERK

A. Linked Data

Het Semantisch Web [3] is een collectie van technologiën om
data leesbaar te maken voor machines waarvoor Linked Data
[1, 3] het initiatief is om deze gegevensrepresentatie te verbete-
ren. Dit raamwerk bevat enkele verschillende semantisch web
technologiën. RDF [4] biedt een data model aan die gebaseerd
is op grafen en triples gebruikt om data te structureren en deze
naar elkaar te linken. SPARQL [5, 6] is een taal en protocol om
RDF data opslagplaatsen te bevragen door middel van SPARQL
eindpunten die deze kunnen uitvoeren. Deze queries zijn graaf
patronen waarop patroonherkenning wordt toegepast om pas-
sende data voor de variabelen in die graaf op te vragen.

B. RDF Annotatie

Metadata wordt gebruikt in gevallen waar extra informatie
nodig is over de data. Deze metadata kan worden gebruikt om
triples te annoteren [7] met temporele informatie, bijvoorbeeld
om de volatiliteit [8] van data aan te duiden.

Er zijn verschillende mogelijkheden om deze data annotatie
uit te voeren. a) Reification [7] was de belangrijkste annotatie
methode voor RDF 1.1 [9], annotatie op deze manier wordt ge-
daan door een triple om te zetten naar een reified triple waarop
annotaties kunnen toegevoegd worden. Door het grote aantal
triples die hiervoor nodig zijn werden b) Singleton Properties
geı̈ntroduceerd waarmee predikaten geı̈nstantieerd worden zo-
dat hieraan annotaties kunnen worden toegevoegd. Met de
introductie van RDF 1.1 konden c) Graphs [9] gebruikt worden
om een context van één of meer triples te annoteren. Dit concept
was al reeds gestandaardiseerd door SPARQL [6] voor RDF
1.1.

We hebben twee verschillende mechanismen onderzocht om
tijdsinformatie toe te voegen in RDF [10, 11]: graaf versies
en tijd labeling. De eerste werkt op basis van momentopna-
mes van de volledige graaf die genomen worden elke keer een
verandering optreedt in de data, terwijl de tweede enkel de
triples annoteert met hun tijdstip van aanpassing. Tijd labe-
ling wordt gezien als beter uitbreidbaar en efficiënter. Een
verdere opdeling [11] werd gemaakt tussen punt-gebaseerde
end interval-gebaseerde tijd labeling. Interval-gebaseerde la-
beling wordt gebruikt in scenarios waar verschillende waarden
voor een bepaald feit kunnen bestaan op verschillende tijdstip-
pen in een dataset. Punt-gebaseerde labeling wordt gebruikt
om de tijd aan te duiden waarop een unieke versie van een feit
beschikbaar is, dit kan verwijzen naar de start- of eindtijd van
de geldigheidsduur.

Een temporeel vocabularium [10] werd geı̈ntroduceerd om
zowel interval-gebaseerde als punt-gebaseerde tijd labeling voor
te stellen. Er wordt naar dit vocabularium verwezen als tmp.

Een voorbeeld van equivalente tijd geannoteerde triples ge-
bruikmakende van de drie verschillende methoden van annotatie
in het tijd vocabularium tmp in het Turtle [12] formaat kan ge-
vonden worden in respectievelijk Listings 1, 2 and 3.

_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http://me.example.org/> ;
tmp:interval [ tmp:initial

"2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final
"2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 1 : Een tijd geannoteerde triple gebruikmakende van reification [7]
die de geldigheid tijd voorstel door middel van interval-gebaseerde labeling.

:me foaf:workplaceHomepage <http://me.example.org/> _:c .
_:c tmp:interval [ tmp:initial

"2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final
"2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 2 : Een tijd geannoteerde triple gebruikmakende van graphs in het
N-Quads [13] formaat.



foaf:workplaceHomepage#1 sp:singletonPropertyOf foaf:
workplaceHomepage .

:me foaf:workplaceHomepage#1 <http://me.example.org/> .
foaf:workplaceHomepage#1 tmp:interval [

tmp:initial "2008-04-01T09:00:00Z"ˆˆxsd:dateTime ;
tmp:final "2009-11-11T17:00:00Z"ˆˆxsd:dateTime ] .

L I S T I N G 3 : Een tijd geannoteerde triple gebruikmakende van Singleton
Properties [14] .

C. Stream Redenering

Om continue queries over RDF data streams te kunnen uitvoe-
ren hebben we nood aan enkele concepten van Stream Redene-
ring [15, 16] die eigenlijk een versie is van Stream Verwerking
in de context van Linked Data. Dit domein van onderzoek
integreert data streams met traditionele RDF redenering. Een
venster [17] is een beperkte verzameling van feiten die geordend
is in tijd zodat niet alle beschikbare informatie moet bekeken
worden tijdens het redeneren. Deze vensters hebben een zekere
lengte die de tijdsduur aanduidt en vordert in tijd op basis van
een stapgrootte. De term Continue Verwerking [15] wordt ge-
bruikt om te verwijzen naar de cyclus van continue uitvoering
voor continu uitvoerende queries over veranderende data, wat
verschilt van de traditionele verwerking omdat deze een speci-
fiek start- en eindpunt heeft. Door deze continue verwerking
doen clients aan Query Registratie [15, 16] om ervoor te zorgen
dat het SPARQL eindpunt deze query herhalend kan uitvoeren,
in tegenstelling tot traditionele eindpunten waarbij de query
eenmalig wordt uitgevoerd. Triples krijgen een tijdstip. Dit
kan gebeuren door de annotatie van triples [18] met een nieuw
triple structuur die de tijdstip T bevat en de tijd aanduidt waarop
dit tuple geldig is. Dit resulteert in een stream van monotoon
niet-afnemende triples in tijd. Een formele representatie van
een RDF stream gebruikmakende van deze tijdstippen T kan
gevonden worden in Vergelijking 1.

. . .

(hsubj
i

, pred
i

, obj
i

i, T
i

)

(hsubj
i+1, predi+1, obji+1i, Ti+1)
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D. SPARQL Streaming Extensies

C-SPARQL [19] is een eerste benadering tot de bevraging
over statische en dynamische gegevens. Dit systeem laat
de client toe om een query te registreren in een uitgebreide
SPARQL syntaxis die toelaat om vensters te definiëren over
dynamische data. De uitvoering van queries is gebaseerd op de
combinatie van traditionele SPARQL verwerking met een Data
Stream Management System (DSMS) [17]. Het interne model
van C-SPARQL maakt intern queries die het werk verdelen
over het DSMS en de SPARQL verwerker om respectievelijk
de dynamische en statische data te behandelen.

CQELS [20] is een ”witte doos” benadering, in tegenstelling
tot de ”zwarte doos” benaderingen zoals C-SPARQL. Dit wilt
zeggen dat CQELS zelf volledig alle query operatoren imple-
menteert zonder dat een omzetting naar een andere taal en dele-
gatie naar een ander systeem nodig is, wat het proces efficiënter
kan maken. De syntaxis lijkt goed op die van C-SPARQL,
deze ondersteunt ook query registratie en tijd vensters. Volgens
eerder onderzoek [20] werkt deze benadering veel beter dan
C-SPARQL voor grote datasets, voor eenvoudige queries en
kleine datasets geldt het tegenovergestelde.

E. Triple Pattern Fragments

Experimenten [21] hebben aangetoond dat slechts 30% van
de publieke eindpunten een beschikbaarheid hebben van tenmin-
ste 99%. De grootste oorzaak van deze lage beschikbaarheid is
de onbeperke complexiteit van SPARQL queries gecombineerd
met het publieke karakter van SPARQL eindpunten. Clients
kunnen SPARQL queries van arbitraire complexiteit sturen wat
zeer zwaar is voor eindpunten. Triple Pattern Fragments [2]
probeert dit probleem van lage beschikbaarheid en performantie
op te lossen. Dit gebeurt door een deel van de query verwerking
te verplaatsen naar die client, wat de server belasting verlaagt
ten koste van een toename in data overdracht. De eindpunten
zijn beperkt tot een interface waartegen enkel aparte triple patro-
nen kunnen worden bevraagd in plaats van volledige SPARQL
queries. De client is dan zelf verantwoordelijk om de rest van
de query uitvoering te doen.

III. DYNAMISCHE DATA REPRESENTATIE

In dit werk wordt zowel de interval-gebaseerde als de punt-
gebaseerde tijd labeling gebruikt, hier wordt verder naartoe
verwezen als de temporele domeinen. Interval-gebaseerde la-
beling wordt gebruikt om een start- en eindpunt in tijd aan te
duiden waartussen triples geldig zijn. Punt-gebaseerde labeling
wordt gebruikt om de vervaltijden van triples voor te stellen.

Met vervaltijden kan er slechts één versie van een feit bestaan
in een dataset omdat hier anders niet genoeg kennis over is om
de starttijd van de geldigheid aan te duiden. Voor tijd intervallen
kunnen meerdere versie van een feit bestaan. Wanneer data zeer
volatiel is kunnen opeenvolgende interval-gebaseerde feiten snel
opstapelen. Indien geen technieken gebruikt worden om oude
data te aggregeren of te verwijderen, zullen datasets snel groeien
wat zal leiden tot continu trager uitvoeren queries. Dit probleem
bestaat niet bij vervaltijden omdat daar enkel de laatste versie
van een feit kan bestaan, dus de volatiliteit zal hier geen effect
hebben op de grootte van de dataset.

Reification, singleton properties en graphs zijn methoden om
vervaltijden of tijd intervallen toe te voegen. Aangezien onze
oplossing gebaseerd is op Triple Pattern Fragments, kunnen
deze fragmenten gebruikt worden als alternatief voor graphs om
een context over triples voor te stellen, we zullen hier naartoe
verwijzen als implicit graphs. Deze implicit graphs zijn ook
verschillend van de drie alternatieven op het vlak dat hiermee
de structuur van de originele data niet aangepast moet worden
wanneer annotaties worden toegevoegd. Dit betekent dat clients
die deze tijd annotaties niet ondersteunen nog steeds zonder pro-
blemen deze ruwe data kunnen bevragen. Wanneer reification,
singleton properties of graphs-gebaseerde annotatie gebruikt
worden, zullen deze clients niet meer in staat zijn om deze data
op te vragen. Tabel I toont een overzicht die deze vier metho-
den van annotatie vergelijkt in termen van het benodigde aatal
triples, indien quad of TPF ondersteuning nodig is en of de
methode clients die deze annotatie niet ondersteunen nog steeds
toelaat om de dynamische data op een statische manier op te
vragen.

IV. OPLOSSING

Onze oplossing is opgebouwd uit een extra software laag
bovenop de bestaande Triple Pattern Fragments client. De
Triple Pattern Fragments server heeft geen veranderingen nodig,
behalve dat de dynamische data hierin moet geannoteerd zijn op
basis van een mogelijke combinatie van temporeel domein en



Aantal triples Quads TPF Ondersteuning voor traditionele clients

Reification
f
R interval

(t) = 5 ⇤ t
f
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(t) = 4 ⇤ t
f
R interval beter
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nee nee nee

Singleton Properties
f
SP interval

(t) = t+ 3

f
SP vervaltijd

(t) = t+ 2
nee nee nee

Explicit Graphs
f
EG interval

(t) = t+ 2

f
EG vervaltijd

(t) = t+ 1
noodzakelijk nee nee

Implicit Graphs
f
IG interval

(t) = t+ 2

f
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nee ja ja

TA B L E I : Overzicht van de meest belangrijke eigenschappen van de verschillende manieren van annotatie. De kolom aantal triples bevat functies die het aantal
triples aanduidt in termen van het originele aantal triples t. Quads toont aan indien dit type van annotatie het concept van quads nodig heeft. TPF duidt aan als het
type een Triple Pattern Fragments interface nodig heeft. De laatste kolom toont welke types toelaten om gewone clients de dynamische feiten als statische data op
te vragen.
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F I G . 1 : Overzicht van de voorgestelde architectuur.

annotatie methode. Deze dynamische data moet dan geüpdatet
worden door een extern proces op basis van de temporele duur,
voorgesteld door vervaltijden op tijd intervallen.

Figuur 1 toont een overzicht van de architectuur voor deze
extra laag bovenop de TPF client, wat vanaf nu de Query Strea-
mer genoemd zal worden. Bovenaan het diagram is de client te
zien die een gewone SPARQL query naar de Query Streamer
stuurt en een stream van query resultaten terug krijgt. De Query
Streamer kan queries uitvoeren door de lokale Basic Graph
Iterator die deel uitmaakt van de TPF client en zelf queries kan
uitvoeren op een TPF server.

De Query Streamer is opgebouwd uit zes belangrijke compo-
nenten. Eerst is er de Herschrijver module die éénmalig wordt
uitgevoerd bij de start van de query stream. Deze module is in
staat om de originele query om te vormen naar een statische en
dynamische query die respectievelijk de statische achtergrond
gegevens en de tijd geannoteerde veranderende data kunnen op-
vragen. Deze transformatie gebeurt op basis van de verkregen
informatie door de bevraging van metadata over de triple patro-
nen op het eindpunt door de lokale TPF client. De Streamer
module neemt deze dynamische query en initialiseert de stream
lus door deze dynamische query uit te voeren en zijn resultaten
door te sturen naar de Tijd Filter. De Tijd Filter bekijkt alle tijd
annotaties en verwijdert deze die niet geldig zijn voor het hui-

t:delay
t:platform

t:headSign t:routeLabel

t:departureTime

Departure

Delay Platform

Headsign Route Label

Departuretime

F I G . 2 : Basis data model voor de representatie van trein informatie in een
station. De lichtgrijze punten verwijzen naar statische data en de donkergrijze
punten verwijzen naar dynamische data.

dige tijdstip. De minimale vervaltijd van alle resultaten wordt
dan bepaald en gebruikt als vertraagde oproep naar de Streamer
module, wat ervoor zal zorgen dat wanneer tenminste één van
de resultaten verloopt, een nieuwe set resultaten opgevraagd
zal worden. De gefilterde dynamische resultaten worden dan
doorgegeven aan de Materialiseerder die verantwoordelijk is
om een gematerialiseerde statische query te maken. Dit is een
transformatie van de statische query waarin de dynamische re-
sultaten ingevuld zijn. Deze gematerialiseerde statische query
wordt doorgegeven aan de Resultaat Manager die in staat is
om deze queries te cachen door gebruik te maken van de zo-
genaamde graaf-verbinding tussen de statische en dynamische
query als identificator. Deze graaf-verbinding is niets meer dan
de doorsnede van alle variabelen in de WHERE clausule van de
statische en dynamische query. Tenslotte haalt de Resultaat
Manager de vorige gematerialiseerde statische query resultaten
van de lokale cache of voert deze query uit voor de eerste keer
en slaat deze op in de cache. De resultaten worden dan naar de
client gestuurd die de query stream had geı̈nitialiseerd.

V. USE CASE

De besproken architectuur is geı̈mplementeerd in Javascript
gebruikmakende van Node.js [22] om te zorgen voor eenvou-
dige communicatie met de bestaande TPF client. We hebben
onze implementatie getest op de bevraging van de trein infor-
matie van één bepaald station. Figuur 2 toont een basis data
model voor de relevante trein informatie waarin de lichtgrijze
punten verwijzen naar statische data en de donkergrijze punten
verwijzen naar dynamische data.

Dit basis data model is aangepast voor elke mogelijke ma-
nier van annotatie. Elk van deze mogelijkheden kan dan nog
eens worden aangepast om tijd informatie toe te voegen voor



een bepaald temporeel domein. Wanneer bijvoorbeeld reifi-
cation gebruikt wordt als manier van annotatie worden de tri-
ples ?departure t:delay ?delay en ?departure
t:platform ?platform omgevormd en geannoteerd met
een temporeel domein zoals bijvoorbeeld vervaltijden. Een een-
voudige SPARQL query wordt gebruikt om alle informatie op
te vragen voor dit basis data model, deze query is te vinden in
Listing 4. Uiteindelijk zijn er acht afgeleide data modellen voor
elke mogelijke combinatie van annotatie en deze worden alle-
maal vergeleken in termen van uitvoeringstijd en hoeveelheid
data er wordt verstuurd.
PREFIX t: <http://example.org/train#>

SELECT DISTINCT ?delay ?headSign ?routeLabel ?platform
?departureTime

WHERE {
_:id t:delay ?delay .
_:id t:headSign ?headSign .
_:id t:routeLabel ?routeLabel .
_:id t:platform ?platform .
_:id t:departureTime ?departureTime .

}

L I S T I N G 4 : De basis SPARQL query om alle trein informatie op te halen.

Hiernaast hebben we ook een experiment opgezet om de
client en server performantie te meten. Dit experiment was
opgebouwd uit een enkele server en tien fysieke clients. Elk van
deze clients kan één tot tien simultane unieke queries uitvoeren.
In totaal hebben we dus een reeks van 10 tot 200 simultane
query uitvoeringen. Deze opzet werd gebruikt om de client en
server performantie te testen van de implementatie die voorge-
steld werd in dit werk, C-SPARQL [19] en CQELS [20].

Deze testen werden uitgevoerd op de Virtual Wall (generatie
2) [23] omgeving van iMinds. Elke machine had twee Hexa-
core Intel E5645 (2.4GHz) CPU’s met 24GB RAM en liep op
Ubuntu 12.04 LTS. Voor CQELS gebruikten we hun applicatie
versie 1.0.1 [24]. Voor C-SPARQL was dit versie 0.9 [25]. De
dataset hiervoor had ongeveer 300 statische triples en ongeveerd
200 dynamische triples die elke tien seconden aangemaakt en
verwijderd werden.

VI. RESULTATEN

Zoals te zien is in Figuur 3 toont het eerste experiment dat
interval-gebaseerde annotatie een lineaire toename heeft in uit-
voeringstijd wanneer de query stream vordert, in tegenstelling
tot de constante uitvoeringstijd voor wanneer vervaltijden ge-
bruikt worden. Dit gedrag werd verwacht en dit is de reden
waarom oude versies van feiten beter niet voor eeuwig in de da-
taset gehouden worden. Een andere observatie is dat reification
veel trager is in alle gevallen, dit is door het grote aantal triples
die nodig is voor dit type van annotatie. Om een betere vergelij-
king te kunnen maken tussen singleton properties, graphs and
implicit graphs gebruikmakende van vervaltijden, werden de re-
sultaten van Figuur 3 herschaald in Figuur 4. Hier is te zien dat
graphs and singleton properties het beste presteren, met graphs
die net iets beter zijn. Implicit graphs presteren iets slechter,
voornamelijk omdat deze benadering verder onderzoek nodig
heeft om in de praktijk bruikbaar te zijn. Er kan ook opgemerkt
worden dat onze caching oplossing een zeer positief effect heeft
op de uitvoeringstijden. In het optimale scenario zou caching
leiden tot een uitvoeringstijd reductie van 60% omdat drie van
de vijf triple patronen in onze query dynamisch zijn. In onze
resultaten leidt caching tot een gemiddelde reductie van 56%
(gemiddelde genomen zonder resultaten van reification), wat
zeer dicht ligt bij het optimale geval.

( A ) Tijd intervallen zonder caching. ( B ) Tijd intervallen met caching.

( C ) Vervaltijden zonder caching. ( D ) Vervaltijden met caching.

F I G . 3 : Uitvoeringstijden voor alle verschillende types van dynamische data
voorstelling voor verschillende opeenvolgende stream bevragingen. De figuren
tonen een ongeveer lineaire toename bij tijd intervallen en constante uitvoe-
ringstijden voor annotatie met vervaltijden.

( A ) Vervaltijden zonder caching. ( B ) Vervaltijden met caching.

F I G . 4 : Uitvoeringstijden voor alle verschillende types van dynamische data
voorstelling voor verschillende opeenvolgende stream bevragingen. De figuren
bevatten dezelfde data als Figuren 3c en 3d, maar zonder de snel toenemende
resultaten voor reification zodat de resultaten voor de andere methoden in meer
detail zichtbaar worden. Hier is op te zien dat de graph manier de laagste
uitvoeringstijden heeft.

Figuur 5 toont dat de belangrijkste oorzaak van het verschil
in uitvoeringstijden veroorzaakt wordt door de hoeveelheid data
die moet doorgestuurd worden. Deze resultaten lijken goed op
de triple functies in Table I voor elke methode van annotatie. We
kunnen besluiten dat het aantal benodigde triples voor annotatie
de grootste impact heeft op de uitvoeringstijden.

Een aparte meting is gedaan voor de herschrijf fase, die wordt
uitgevoerd aan de start van de query stream door de Herschrij-
ver module. De resultaten in Figuur 6 tonen dat implicit graphs
veel trager zijn. Dit komt doordat implicit graphs gedefinieerd
zijn over triple patroon fragmenten met gedetermineerde triple
waarden. Dit wilt zeggen dat voor elk triple patroon, alle mo-
gelijk waarden moeten gecontroleerd worden of deze wel of
niet als dynamisch moeten gezien worden. De orde van perfor-
mantie tussen de drie andere benaderingen kan weer verklaard
worden door het aantal benodigde triples.

In Figuren 7a en 7b kunnen we zien dat onze implementatie
de server belasting significant verlaagt wanneer we dit verge-
lijken met C-SPARQL and CQELS, en dit was een van onze
belangrijkste doelen. We zien dat de client nu betaalt voor het
grootste deel van de query uitvoering, wat veroorzaakt wordt
door het gebruik van Triple Pattern Fragments. Het client CPU
verbruik voor onze implementatie piekt in het begin van de



( A ) De data overdracht in bytes ge-
bruikmakende van reification voor een
totale overdracht van 36.46 MB over
7924 bevragingen in dit tijdsinterval.

( B ) De data overdracht in bytes ge-
bruikmakende van singleton proper-
ties voor een totale overdracht van 2.57
MB over 627 bevragingen in dit tijds-
interval.

( C ) De data overdracht in bytes ge-
bruikmakende van explicit graphs
voor een totale overdracht van 2.10 MB
over 557 bevragingen in dit tijdsinter-
val.

( D ) De data overdracht in bytes ge-
bruikmakende van implicit graphs
voor een totale overdracht van 6.70 MB
over 1191 bevragingen in dit tijdsinter-
val.

F I G . 5 : De data overdracht in bytes voor de vier methoden van annotatie voor
een duur van 50 seconden. Deze plots gebruiken vervaltijden zonder caching.
Reification gebruikt verbruikt de meeste bandbreedte, terwijl graphs het minst
verbruikt.

F I G . 6 : Histogram van de uitvoeringstijden van de voorverwerkingen voor
de verschillende opties van annotatie, gegroepeerd op methode van annotatie.
De graph methode heeft de laagste uitvoeringstijden voor de voorverwerking.
Vervaltijden zijn overal iets sneller en caching heeft geen significant invloed.

query intialisatie door de herschrijf fase, maar deze zakt daarna
naar ongeveer 5%.

VII. CONCLUSIE

We hebben verchillende methoden voor continu actualise-
rende SPARQL bevragingen onderzocht en vergeleken, samen
met een oplossing gebaseerd op Triple Pattern Fragments. Onze
oplossing blijkt een significante reductie in server CPU verbruik
te veroorzaken ten koste van een toename in bandbreedte en
client verwerking.

We hebben vier verschillende methoden van annotatie on-
derzocht, waarvoor graphs de beste bleek te zijn in onze ex-
perimenten. De twee temporele domeinen, tijd intervallen en
vervaltijden, kunnen gebruikt worden, waarvan de laatste de
beste oplossing is in het geval van zeer volatiele data.

De oplossing die hier voorgesteld werd heeft enkel een extra
laag bovenop de bestaande TPF client nodig om query streaming

( A ) Het gemiddelde client CPU ver-
bruik van één query voor C-SPARQL,
CQELS en de oplossing die wij voor-
stellen. Initieel is het CPU verbruik
voor onze implementatie zeer hoog,
waarna deze convergeert naar ongeveer
5%. Het verbruik voor C-SPARQL en
CQELS is vrijwel onbestaande.

( B ) Het gemiddelde server CPU ve-
bruik voor een toenemend aantal
clients voor C-SPARQL, CQELS en de
oplossing die wij voorstellen. Het CPU
vebruik van onze oplossing blijkt veel
minder beı̈nvloed te zijn door het aan-
tal clients. Merk op dat de test machine
vier core ter beschikking had.

F I G . 7 : Het client en server CPU verbruik voor één query stream voor C-
SPARQL, CQELS en de oplossing voorgesteld in dit werk.

toe te laten. De data die moet aanzien worden als dynamisch
moet geannoteerd worden met tijd informatie in de dataset.

VIII. TOEKOMSTIG WERK

Dit onderzoek is slechts een eerste benadering tot continue
bevraging op basis van Triple Pattern Fragments waarvan ver-
schillende aspecten nog steeds verbeterd kunnen worden.
• In plaats van één statische en dynamische query als resultaat
van de query herschrijving te hebben, kunnen meerdere queries
gebruikt worden met elk een verschillende volatiliteit. Op deze
manier kunnen complexere queries met verschillende dynami-
sche triple patronen mogelijks efficiënter gecached en bevraagd
worden.
• Graph annotatie blijkt de meest efficiënte te zijn uit onze
experimenten, maar implicit graphs annotatie kan op verschil-
lende vlakken nog steeds verbeterd worden om mogelijks nog
efficiënter te worden.
• In dit werk zijn we er van uitgegaan dat de verander tijden
van dynamische data steeds geweten was door de data voorzie-
ner. Vervaltijden en tijd intervallen bepalen kan zeer complex
worden en vereist mogelijks geavanceerde patroonherkenning
algoritmen op de data verander historie.
• Indien de TPF client op een efficiënte manier FILTER on-
dersteuning zou kunnen toevoegen, zouden vervaltijden en tijd
intervallen veel efficiënter opgezocht kunnen worden. Dit kan
mogelijks weer ten koste gaan van een hoger server CPU ver-
bruik.
• Zoals besproken werd in een verwant onderzoek [26] zal
statische achtergrond data mogelijks niet altijd dezelfde blijven.
Dus de Caching module zou hier rekening mee moeten houden.
• De resultaten die hier gepresenteerd werden kunnen moge-
lijks veel verschillen bij andere use cases, dus vergelijkbare
testen voor andere query types kunnen mogelijks interessante
resultaten produceren. Bevragingen voor meer statische data
kunnen bijvoorbeeld efficiënter worden.
• Indien een grotere test omgeving beschikbaar zou zijn, zou-
den de server en client performantie experimenten voor een
groter aantal simultane clients uitvoerd kunnen worden om de
eigenlijke limieten van de server voor deze benadering te bepa-
len.
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Chapter 1

Preface

1.1 Introduction

Information is becoming more important each day. Smart clients keep us up-to-date
with everything we need to know. A lot of this information transfer happens over
HTTP, the base protocol of the World Wide Web. The web is a collection of interlinked
documents aimed at providing information. The primary objective of the web is to
provide information to people, which can be read with web browsers.

A lot of end-user applications require real-time data updates. For example, applications
that provide train schedules might also serve info about the delay of those trains. This
type of data can remain the same up until the final hours or minutes before the train
arrives. The moments on which this data changes can also be estimated by the data
provider when for example the train delay calculation is done once each minute. In
this case, the data provider can inform the user that this data could change after one
minute. The client could then refresh the data after that minute and pull new data if
a newer version exists.

Application scenarios as this one do not require data updates within a couple of mil-
liseconds after the data is changed. A user would not mind if the delay info about his
train is three seconds behind on the actual data. Background processes in such appli-
cations could require less precise and less frequent updates. And more importantly, the
client should be able to choose when to ask for new data updates. It is possible that
the train the user has to take does not leave for another 24 hours, so there is no need
for querying the delays of this train yet, or at least at a much lower frequency.

1
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1.2 Problem Statement

Linked Data [12] is an instantiation of the Semantic Web [13] idea in which RDF and
SPARQL are the standard technologies to respectively declare data in a triple structure
and query that data. Machines should be able to independently discover information
and reason about it.

RDF is a framework to declare relations between resources, these relations are repre-
sented as triples and are called facts. Each triple is built with three elements: a) The
subject of the fact, which is mostly a resource that is represented as an IRI. b) The
predicate that indicates the type of relation this fact represents between the subject and
the object. c) The object of the relation, which is a resource or literal. Even though
applications can search for information they need in a list of triples, it might be better
to use the SPARQL query protocol to search in such a list. SPARQL endpoints allow
clients to execute SPARQL queries. These queries are based on triple patterns, which
means that parts of the triple can be made up of variables with the goal of finding
matching values for the variables.

Traditional SPARQL endpoints have some performance issues because of the unbounded
complexity of SPARQL queries. Triple Pattern Fragments (TPFs) [3] aim to solve
this issue by partially moving this complexity to the clients, and thereby reducing the
computational load on SPARQL endpoints.

Many approaches [7, 14, 9, 15, 10, 11] for querying Linked Data streams with a variable
rate of data generation already exist. While traditional SPARQL querying and data
representation is based on static data, most of these new approaches introduce ways
of representing RDF triples in a time-sensitive way. They also introduce methods to
query and reason over this data, combined with the traditional static data. Clients
who wish to receive continuous updates on their time-sensitive queries simply need to
register their query to a query endpoint and the server will take care of the rest.

The existing methods for querying time-sensitive information with SPARQL are prone
to server overloading. The first cause of this scalability problem is the unbounded
complexity of queries, which can be solved by using TPF. The second reason is that
the query endpoints accept query registrations, which means that servers need to keep
states of each registered query and must continuously process each of them instead of the
client continuously polling for updates. As long as the number of queries is guaranteed
to be limited, this approach should not cause many problems. But for public endpoints,
this can become a major cause of server downtime.

The goal of this work is to find a way to make time-sensitive SPARQL querying more
scalable. This will be done by extending the Triple Pattern Fragments approach while
making sure that the clients should not register queries to the server and thus keeping
the servers stateless.
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1.3 Research Questions

The main research question that will be investigated in this work is:

• How much can we improve the e�ciency of polling-based SPARQL querying when
knowing the temporal query results volatility?

In other words, we will investigate di↵erent approaches on how to perform SPARQL
queries on real-time data based on polling, with the assumption that the data provider
has knowledge of the frequency the data changes. For answering this question, several
other sub-questions will also need an answer:

1. How can clients make use of this volatility knowledge for improving the e�ciency
of SPARQL querying?

2. Which volatility metadata can be added to the query results?

3. Which approaches can we distinguish for adding temporal volatility knowledge?

4. How does this use of volatility knowledge perform against existing SPARQL en-
gines?

5. Which parameters are required to adequately measure this e�ciency?

The first sub-question requires clients to somehow be notified by the SPARQL endpoint
of the volatility metadata. For sub-question 2, a comparison of di↵erent possible meta-
data has to be made. Sub-question 3 will require a certain data type to be used for
sending this volatility metadata, together with the original data. Di↵erent approaches
can be compared for this. The fourth sub-question requires an implementation of at
least one of the approaches to be compared with the traditional alternatives. The
last sub-question is needed to determine which parameters are required for doing this
comparison.

Another sub-question that could have been added is: How to predict the volatility of
query results? This is out of the scope of this work, since that could easily become a
completely separate research on its own. However, this does not make this prediction
unimportant, this is definitely something that has to be researched in future work.

1.4 Hypotheses

Following hypotheses related to the research questions have been identified.

1. Some volatility patterns are too complex to e�ciently predict and declare.

2. Well calculated data change patterns improve the e�ciency of SPARQL querying.
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3. Good usage of volatility knowledge in client polling can make SPARQL querying
more e�cient than existing systems in certain scenarios.

4. Smart client polling is more scalable for the server than streaming-based SPARQL
engines.

These will either be confirmed or denied at the end of this work.

1.5 Outline

The remainder of this document is structures as follows. Chapter 2 will give an overview
of the relevant Semantic Web technologies. After that, a basic use case will be explained
in Chapter 3 which will be used throughout this document. Chapter 4 will explain the
terminology and concepts that will be used in the context of dynamic data. An overview
of the relevant methods of RDF annotation will be given in Chapter 5. A selection
of the most important Streaming RDF approaches will be presented in Chapter 6.
Next, di↵erent methods for representing dynamic data are discussed in Chapter 7. In
Chapter 8, the architecture of our proposed solution is explained. After that, our
previously presented use case will be expanded in Chapter 9 for the di↵erent methods
for representing dynamic data, together with an overview of the executed experiments
of which the results are presented in Chapter 10. Finally, some concluding remarks and
a discussion of possible future work will be discussed in respectively Chapters 11 and
12.



Chapter 2

Semantic Web

2.1 Semantic Web in general

The World Wide Web is a global system for interlinked documents. The idea behind
this Web is to enable humans to retrieve data and draw conclusions. In 2001, Tim
Berners-Lee [13] proposed an evolution towards a Semantic Web where the documents
are not only readable by humans, but also interpretable by machines. The ultimate goal
of this evolution is to reach Semantic Interoperability, so that humans and machines
can derive the same knowledge from data.

Tim Berners-Lee also coined the term Linked Data, which he calls ”The Semantic Web
done right.” [16]. While the Semantic Web is about machine-accessible data, for which
Linked Data is the framework, using technologies like RDF and SPARQL, which will
be explained later.

2.1.1 The Four Rules of Linked Data

Tim Berners-Lee outlined a set of rules [12, 13] for publishing data on the Web as Linked
Data to become semantically interoperable:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL).

• Include links to other URIs so that they can discover more things.

5
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The first rule simply states that any “thing”, that can be referenced as data resource,
should have a unique Uniform Resource Identifier. URIs are required because they are
easily accessible to machines.

The second rule is also very straightforward, a URI is almost useless if it can not be
looked up via the Hypertext Transfer Protocol protocol. The act of looking up data
from a URI is called dereferencing, with the goal of discovering more information about
a subject.

The third rule, that useful information should be provided, demands data providers
to supply information using the standards for Linked Data representation: RDF and
SPARQL. These standards will be explained in respectively Sections 2.2 and 2.3.

The last rule is very important for making an unbounded Web, just like the regular
Web where everything is connected via hyperlinks.

2.1.2 Five-Star Rating

With the goal of encouraging data owners, Tim Berners-Lee [12] developed a five-star
rating system that indicates how open their data is. This rating aims at making Linked
Open Data, which is Linked Data, but released under an open license. This openness is
a very strong requirement for making a web of Linked Data, otherwise data might be
publicly available without people being legally allowed to use it.

? On the web, open license
?? Machine-readable data
? ? ? Non-proprietary format
? ? ?? RDF standards
? ? ? ? ? Linked RDF

Table 2.1: Five star rating for Linked Open Data.

2.1.3 Semantic Web Stack

The Semantic Web Stack is hierarchy of languages and technologies that are standard-
ized to make the Semantic Web possible. Like any layered architecture, each layer
uses services provided by the layers below and o↵ers services to the layers above. The
parts this research will focus on, is querying with SPARQL together with the RDF data
interchange. An overview of this architecture can be seen in Figure 2.1.
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Figure 2.1: The Semantic Web Stack.

2.2 RDF

The Resource Description Framework (RDF) [17] provides a graph-based data model
that can be used to structure data and interlink it. RDF uses so-called triples to
represent data, these triples consist of a subject, predicate and object. A real-world
resource (subject) can be related in some way (predicate) to another resource (object).

For example, the graph in Figure 2.2 can be serialized as the triples in Listing 2.1, this
serialization format will be explained in Subsection 2.2.2. It is easy to understand that
this data model is able to represent any form of data and its relationships.

Since RDF 1.1 [18] graphs are supported. This extends triples with a fourth element
which can be used to add information about a triple. Before this, triple annotation had
to be done with the use of reification. Triple annotation will be further explained in
Chapter 5.
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created
resides

location

depicts

influenced
Puppy

Guggenheim
Je↵ Koons

Picasso Dog

Bilbao

Figure 2.2: Example [1] of an RDF graph.

http :// dbpedia.org/resource/Jeff_Koons http :// dbpedia.org/ontology/created
http :// dbpedia.org/resource/Puppy .

http :// dbpedia.org/resource/Picasso http :// dbpedia.org/ontology/influenced
http :// dbpedia.org/resource/Jeff_Koons .

http :// dbpedia.org/resource/Puppy http :// dbpedia.org/ontology/resides http
:// dbpedia.org/resource/Guggenheim .

http :// dbpedia.org/resource/Puppy http :// dbpedia.org/ontology/depicts http
:// dbpedia.org/resource/Dog .

http :// dbpedia.org/resource/Guggenheim http :// dbpedia.org/ontology/
location http :// dbpedia.org/resource/Bilbao .

Listing 2.1: Example [1] of RDF triples.

2.2.1 Definitions

In what follows, graphs and triples will be formally defined based on previous work
[19]. The notations U , B, L and V [20] will be used to respectively denote the sets of
all URIs, blank nodes, literals and variables.

Definition 1 (RDF triples). T = (U [ B)⇥ U ⇥ (U [ B [ L) is the (infinite) set of all
RDF triples. One triple pattern can be represented as t = (s, p, o) with s, p, o 2 (V [T ).

URIs These are allowed for subjects, predicates and objects. They simply refer to
a ’thing’ that is defined as a separate resource. With the use of dereferencing [1, 21],
clients can access specific entities by resolving their URI.

Blank nodes Blank nodes are anonymous nodes. For these nodes, no URI or literal
is given because it is either not known or not important. These nodes can be labeled.
Labeled blank nodes are assumed to refer to the same resource when using the same
label. Unlabeled blank nodes can contain triple information about the resource.
In situations where a stronger identification is needed for these blank nodes, the tech-
nique called skolemization [18] can be used. This replaces blank nodes with a globally
unique URI without changing their meaning.
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created
Puppy

Figure 2.3: Example of a triple where the subject is a blank node.

http :// dbpedia.org/resource/Jeff_Koons http :// xmlns.com/foaf /0.1/ name "
Jeff Koons" .

Listing 2.2: Triple where the object is a string literal.

Figure 2.3 shows an example of a triple where the subject is unknown and is represented
as a blank node.

Literals Simple primitive types which can be strings, integers and any other datatype
that can be referenced by a URI.

Listing 2.2

Variables Almost the same as labeled blank nodes, but with that di↵erence that
they are used for data extraction with for example SPARQL (more information in
Section 2.3). These variables can not be used in data stores for declaring entities.

2.2.2 Serialization

RDF was at its launch in 2001 XML-based [22]. Because of the XML element, RDF/XML
is inherently verbose [1] and introduces significant schema overhead compared to other
technologies like JSON [23]. For this reason, the Turtle [24] syntax was introduced, for
which an example was already shown in Listing 2.1. The remainder of this document
will always use the Turtle syntax to represent RDF, unless specifically stated otherwise.

2.2.3 Turtle Syntax

Triples are represented by writing their elements (subject, predicate, object) separated
by a whitespace and finally terminated by a dot. This syntax was constructed in such
a way that it improves human readability by making it look like regular sentences. As
stated in Definition 1, each of these elements can be part of di↵erent sets that each have
their own syntax:

• U : The URI surrounded by angle brackets. For example: <http://example.org
/York>

• B (labeled): _: followed by the label of the blank node. For example: _:york
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@prefix gh: <http :// guggenheim.org/new -york/collections/collection -online/
artwork/> .

@prefix dc: <http :// purl.org/dc/terms/> .
@prefix viaf: <http :// viaf.org/viaf/> .

gh:48 dc:creator viaf :5035739 .

Listing 2.3: Example [1] of the Turtle @prefix abbreviation for URIs.

gh:48 dc:creator viaf :5035739;
dc:title "Puppy" .

viaf :5035739 :influencedBy viaf :15873 ,
viaf :95794725 .

Listing 2.4: Example [1] of the Turtle semicolon and comma abbreviation for shared
subjects and/or predicates.

• B (unlabeled): Triple parts encapsulated between brackets. For example: []
foaf:knows [ foaf:name "Bob" ] .

• L: Literal between double quotes. For example: "Bob", "42"^^xs:integer or
"York"@en

Some URIs can become quite long, because of that we can use a shorthand with the
@prefix directive. An example of this mechanism can be found in Listing 2.3. This
prefix makes our triples much shorter and allows prefixes to be reused across multiple
triples. This reusability also reduces the chance on mistakes when otherwise duplicating
these URIs.

Turtle also has built-in abbreviation possibilties for when triples have identical subjects
or identical subjects and predicates. For this, semicolons and commas can respectively
be used, an example can be seen in Listing 2.4.

Unfortunately, Turtle does not support graphs which were introduced in RDF 1.1 [18].
There are however some alternative ways of serializing RDF which are discussed in the
RDF 1.1 primer [25]. For example, TriG [26] is an extension of Turtle which enables
the specification of multiple graphs in one document. Any valid Turtle document is also
a valid TriG document.

2.2.4 Vocabularies

Only the basics of RDF vocabularies (also known as ontologies) will be covered here,
since these are not needed in very much detail for this research.

The RDF Vocabulary Definition Language (RDFS) [27] and the extension Web On-
tology Language (OWL) [28] provide a foundation for creating vocabularies. These
vocabularies can be used to define entities with their relations. Vocabularies are in fact



2.2. RDF 11

just triple collections in RDF defining classes and properties using the terms provided
by RDFS and OWL.

Because of the open idea behind Linked Data, anyone can publish vocabularies and
make use of them. This idea can also introduce some partially redundant vocabularies.
This is why terms in vocabularies can also be linked to define their relation to each
another.

Here are some basic examples [29] showing the power of RDFS:

• The entity book:uri is an element of the class ex:Textbook: book:uri rdf:
type ex:Textbook .

• book:uri (entity) is also an element of class ex:WorthReading: book:uri rdf:
type ex:WorthReading .

• Every textbook (class) is a book (class): ex:TextBook rdfs:subClassOf ex:Book
.

2.2.5 Temporal RDF

Traditional RDF triples are not able to express the time and space in which facts
are true. In domains where data needs to be represented for certain times or time
ranges, these traditional representations should be altered. This section will discuss the
introduction of time into RDF based on previous research [30, 31].

Definitions Two mechanisms for adding time were researched [31]: versioning and
time labeling. Versioning will take snapshots of the complete graph every time a change
occurs. Time labeling will annotate triples with their change time. The latter is believed
to be a better approach in the context of RDF. The reasons for this are that a) RDF is
supposed to be extensible, and this labeling supports this, and b) complete snapshots
every time a small part of the graph changes can introduce overheads.

Two types of temporal dimensions are considered [31]: valid and transaction times.
Valid time is the time at which the element is valid in the world. The transaction time
is the time instant at which the data was stored or created.

A distinction [31] is made between point-based and interval-based labeling. The former
states info about an element at a certain time instant, while the former states info at
all possible times between two time instants. It is also noted that these representations
are interchangeable [30].

Vocabulary A temporal vocabulary was introduced [30] for mechanisms previously
discussed, this will be referred to as tmp in the remainder of this document. The
following properties are introduced:



12 CHAPTER 2. SEMANTIC WEB

_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http ://me.example.org/> ;
tmp:interval [ tmp:initial

"2008 -04 -01 T09 :00:00Z"^^xsd:dateTime ;
tmp:final
"2009 -11 -11 T17 :00:00Z"^^xsd:dateTime ] .

Listing 2.5: A time-annotated triple using reification representing the valid time in an
interval-based representation.

_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http ://me.example.org/> ;
tmp:instant [ "2008 -04 -01 T09 :00:00Z"^^ xsd:dateTime ,

"2008 -04 -01 T09 :00:01Z"^^xsd:dateTime ,
"2008 -04 -01 T09 :00:02Z"^^xsd:dateTime ,
...
"2008 -10 -11 T16 :59:58Z"^^xsd:dateTime ,
"2008 -10 -11 T16 :59:59Z"^^xsd:dateTime ,
"2009 -11 -11 T17 :00:00Z"^^xsd:dateTime ] .

Listing 2.6: A time-annotated triple using reification representing the valid time in an
point-based representation.

• interval: Used to indicate that the object element refers to an interval-based
time representation, the referred object must contain the properties initial and
final.

• instant: Used to indicate that the object element refers to an point-based time
representation.

• initial, final: Indicates that the object element refers to respectively the start
and the end of the interval-based time representation.

The range of instant, initial, final is the set of natural numbers representing times-
tamps or the xsd:timestamp data type. The literal now is introduced to represent the
current time.

Example An example of the valid time of a triple in an interval-based representation
can be found in Listing 2.5, this representation can be transformed to a point-based
representation by listing all possible time instants between the interval edges at the cost
of more triples, as can be seen in Listing 2.6.

2.3 SPARQL

RDF triple stores can be queried using the SPARQL Protocol and RDF Query Language
(SPARQL) [32, 2]. A SPARQL endpoint is a SPARQL query engine which can be used
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PREFIX dbpedia: <http :// dbpedia.org/resource/>
PREFIX dbpprop: <http :// dbpedia.org/property/>

SELECT ?work WHERE {
?work dbpprop:artist dbpedia:Pablo_Picasso .

}

Listing 2.7: A SPARQL query [1] to lookup all the works of Picasso.

to execute such queries targeted at certain datasets. The query language is based
on pattern matching in RDF graph structures by using so-called graph patterns. As
mentioned in Subsection 2.2.1, variables can be used instead of the subjects, predicates
or objects with the goal of finding matches for these variables.

The example in Listing 2.7 has a defined predicate and object, but a variable subject.
This means that all possible triples which have the same predicate and object will be
collected, and in this case also selected because the variable is also available in the
SELECT statement.

The graph pattern declared after the WHERE statement can be an arbitrarily complex
RDF structure which has to be matched. It allows any number of tuples, including
URIs, (nested) blank nodes and literals.

The SPARQL specification [32] allows for four di↵erent variations:

• SELECT: Extract raw values from an endpoint for variables which are returned in
a table format.

• CONSTRUCT: Same as SELECT, but returns the data in valid RDF.

• ASK: Ask for True or False.

• DESCRIBE: (Partially) extract an RDF graph from an endpoint, the exact part of
the graph depends on the endpoint.

2.3.1 Graphs

Selecting the RDF base graph can be done with the FROM clause which takes a URI as
parameter. A so-called named graph can be selected with FROM NAMED. Named graphs
can be used in the query statement for sub-graph scoping.

Sub-graphs can be used for scoping FILTER clauses, declaring OPTIONAL parts or taking
a UNIONs of them. More details on this can be found in the SPARQL specifications [32].

An example of a nested graph can be found in Listing 2.8
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SELECT ?name ?mbox ?hpage
FROM <http :// example.org/dft.ttl >
FROM NAMED <http :// example.org/>
WHERE {

{
?x foaf:name ?name .
?x a ex:Person .
GRAPH <http :// example.org/> {

?x foaf:mbox ?mbox
OPTIONAL { ?x foaf:homepage ?hpage }

}
} UNION {

?x foaf:name ?name .
?x a ex:Company .

}
}

Listing 2.8: Complex graphs in SPARQL.

PREFIX <http :// books.example/>
SELECT SUM(? lprice) AS ?totalPrice
WHERE {

?org :affiliates ?auth .
?auth :writesBook ?book .
?book :price ?lprice .

}
GROUP BY ?org
HAVING (SUM(? lprice) > 10)

Listing 2.9: Aggregate functions in SPARQL [2].

2.3.2 Aggregate functions

As of SPARQL 1.1 [2], aggregates were introduced. This opened up a whole new world
of possible queries. For example: What is the total price of all the items that can be
bought in shop x? The SELECT statement allows expressions to be enclosed into these
aggregate functions to make them return one numerical value, instead of one or more
values from triples. The allowed functions are: COUNT, SUM, AVG, MIN and MAX.

The example shown in Listing 2.9 will look for all the books from organizations having
a total book price larger than 10, and it will return the total sum of those prices.

2.3.3 SPARQL endpoints

Triple stores can provide a SPARQL interface over HTTP [33], like Virtuoso [34] and
Jena TDB [35], turning them into a SPARQL endpoint.

SPARQL endpoints act as simple web service. These endpoints implement the SPARQL
protocol [32] by accepting SPARQL-queries. These queries can then be processed by
the server and the results are then sent back to the client.



2.3. SPARQL 15

Since SPARQL-queries have no limitation on their range and complexity, the servers
use a significant portion of processor time and memory for certain queries. This re-
quires SPARQL endpoints to be high-performant and have a high-availability, since
they should always be able to provide data. Unfortunately, these properties make end-
points poorly scalable. This issue is handled further in Section 2.4.

2.3.4 Definitions

Continuing on the definition of triples in Subsection 2.2.1 and previous work [20, 7], a
collection of definitions will be presented to formally define the features of SPARQL.

Mapping A mapping µ is defined as a partial function µ : V ! T , this represents the
computation of bindings for the variables of a SPARQL query. dom(µ) is the subset of
variables V where µ is defined, and deg(µ) is the cardinality of dom(µ).

Triple Pattern A triple pattern can be represented as t = (s, p, o) with s, p, o 2
(V [ T ).

Graph Pattern A graph pattern P is defined as a list of triple patterns t.

Compatible mappings Two given mappings µ1 and µ2 are compatible if 8x 2
dom(µ1) \ dom(µ2), then µ1(x) = µ2(x).

Mapping operations Two mappings A and B can be combined in the following
ways:
A ./ B = {µ1 [ µ2|µ1 2 A, µ2 2 B are compatible}
A [B = {µ|µ 2 A or µ 2 B}
A \B = {µ 2 A|8µ1inB, µ1 and µ1 are not compatible}
A ./B = (A ./ B) [ (A \B) The left outer-join operator

Graph Pattern Evaluation The notation [[P]]D is used to represent the evaluation
of a graph pattern P over a dataset D. It is recursively defined as:
[[t]]D = {µ|dom(µ) = var(t) ^ µ(t) 2 D}, with t a triple pattern and var(t) the set of
variables that occur in t.
[[(P1 AND P2)]]D = [[P1]]D ./ [[P1]]D
[[(P1 OPTIONAL P2)]]D = [[P1]]D ./ [[P1]]D
[[(P1 UNION P2)]]D = [[P1]]D [ [[P1]]D



16 CHAPTER 2. SEMANTIC WEB

2.4 Triple Pattern Fragments

There is a major problem [3] with the performance and availability of existing SPARQL
endpoints. Experiments [36] made it clear that only 30% of the public endpoints reach
a monthly ’two nines’1 of uptime, which is very low for a web service. The cause of this
are the conflicting requirements of unrestricted SPARQL queries and public availability
to many simultaneous users. Currently, clients can simply send queries of an arbitrary
complexity. These complex queries introduce a bottleneck, because they block other
pending queries. And when too many complex requests are sent, the server will simply
go down under the high load.

2.4.1 Proposed Solution

Triple Pattern Fragments (TPFs) [3] are introduced as a solution to this issue. The
idea is to put more computational responsibility at the clients and thereby reducing
the computational load on the servers at the cost of increased data transfer. Figure 2.4
(taken from [3]) shows an overview of this idea, the bars next to the clients and servers
indicate the relative need of processing power and the width of the dotted lines indicate
the required data transfer.

(a) Classic scenario of high server load and
clients waiting for query results.

(b) Lowering TPF server load by moving
query execution to clients.

Figure 2.4: Comparison of the classic SPARQL endpoints and the TPF concept.

This solution causes the (simple) query results from servers to be rather large because
queries are less detailed and large parts of the data will have to be processed client-side.

2.4.2 Definitions

The terms Linked Data Fragment and Triple Pattern Fragment (formerly know as basic
Linked Data Fragment) are defined here based on definitions from previous work [3, 19].

Definition 2 (Linked Data Fragment (LDF)). A Linked Data Fragment [38] of a Linked
Data dataset is a resource consisting of those elements of this dataset that match a
specific selector, together with their metadata and the controls to retrieve related Linked
Data Fragments.

1
The ’amount of nines’ [37] is derived from a percentage that indicates the uptime, or availability,

of a system. The number of nines is calculated as �log(1�A), with A the percentage of availability.
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Definition 3 (Triple Pattern Fragment (TPF)). A Triple Pattern Fragment [39] is
a Linked Data Fragment with a triple pattern as selector, count metadata, and the
controls to retrieve any other triple pattern fragment of the same dataset, in particular
other fragments the matching elements belong to.

2.4.3 Metadata

Because of the large amount of data transfered per query, extra metadata and controls
are sent together with the results. If for example every possible person is being queried,
the result would be too big to send in one message. That is why pagination [40] is
introduced together with the controls to browse through these pages. These controls
are represented using the Hydra hypermedia API vocabulary [41].

These Hydra controls are not limited to pagination, but the Hydra Core Vocabulary
(which is implemented by TPFs) allows for generic controls to be declared so that
clients can autonomously discover how to use an API. A dataset description is also
added in TPFs using Vocabulary of Interlinked Datasets (VOID) [42] for representing
info such as the amount of triples. The importance of this triple count will be explained
in Subsection 2.4.5.

2.4.4 Server

A TPF server [3] is a server that provides at least one dataset in a triple-based repre-
sentation. The TPF server was designed with the goal of keeping response times in the
same range of the average HTTP server, a few hundred milliseconds, while also being
scalable. The most important requirement was to make sure the server could always be
reached by the clients.

To comply with the defined requirements, two key decisions are made with regards to
the server architecture. The first decision was that the resources o↵ered by the server
can not take too much processing time to generate. Second, partitioning of data into
TPFs should be done in such a way that it can be reused for e�cient caching. An
example of such an implementation can be found on http://linkeddatafragments.
org/software/.

The TPF server implementation can be tested at http://data.linkeddatafragments.
org/. When requesting this page with the Accept: text/turtle header, a TPF re-
sponse is given with the required controls discover the API and to perform additional
queries, just like the visual forms a human would see when visiting that url. An ex-
ample of these controls for one available dataset can be found in Listing 2.10. The
executed query to get this full result was: curl -H "Accept: text/turtle" http://
data.linkeddatafragments.org/dbpedia

http://linkeddatafragments.org/software/
http://linkeddatafragments.org/software/
http://data.linkeddatafragments.org/
http://data.linkeddatafragments.org/
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@prefix hydra: <http :// www.w3.org/ns/hydra/core#>.
@prefix void: <http :// rdfs.org/ns/void#>.
@prefix : <http :// data.linkeddatafragments.org/>.

...

<http :// data.linkeddatafragments.org/dbpedia#dataset > a void:Dataset ,
hydra:Collection;
void:subset :dbpedia;
void:uriLookupEndpoint "http :// data.linkeddatafragments.org/dbpedia {?

subject ,predicate ,object }";
hydra:search [

hydra:template "http :// data.linkeddatafragments.org/dbpedia {?
subject ,predicate ,object }";

] .
hydra:mapping [hydra:variable "subject "; hydra:property rdf:subject

],
[hydra:variable "predicate "; hydra:property rdf:

predicate],
[hydra:variable "object "; hydra:property rdf:object]

.
:dbpedia a hydra:Collection , hydra:PagedCollection;

dcterms:title "A ’dbpedia ’ Linked Data Fragment"@en;
dcterms:description "Triple Pattern Fragment of the ’dbpedia ’

dataset containing triples matching the pattern { ?s ?p ?o
}." @en;

dcterms:source <http :// data.linkeddatafragments.org/dbpedia#
dataset >;

hydra:totalItems "427670470"^^ xsd:integer;
void:triples "427670470"^^ xsd:integer;
hydra:itemsPerPage "100"^^ xsd:integer;
hydra:firstPage <http :// data.linkeddatafragments.org/dbpedia?

subject =& predicate =& object =&page=1>;
hydra:nextPage <http :// data.linkeddatafragments.org/dbpedia?

subject =& predicate =& object =&page=2> .

...

Listing 2.10: TPF controls in the Turtle representation.
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1 PREFIX dbpedia: <http :// dbpedia.org/ontology/>
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3

4 SELECT ?p ?c
5 WHERE {
6 ?p a dbpedia:Artists .
7 ?p dbpedia:birthplace ?c .
8 ?c foaf:name "York"@en .
9 }

Listing 2.11: SPARQL query [3] that will be executed by the TPF client.

2.4.5 Client

The TPF client was designed in such a way that it will always try to optimally calculate
query results in terms of computational usage. As explained before, a query will be
calculated at the client, and only parts of it will be requested from the server.

If the query from Listing 2.11 would be executed, then the client would split this up
into three parts. These parts are exactly the lines 5, 6 and 7, which will now be referred
to as F1, F2 and F3. The main idea of the client algorithm [3] is that it will always join
the fragments (in this case F1, F2 and F3) in such a way that recursively always the
smallest fragment is taken first. This is where the triple count property as mentioned
before comes in. Because the TPF server always sends an estimated triple count, the
client will always know the smallest fragment to start from.

If for example F1 would be the smallest fragment with only 12 matches, this fragment
would be the starting point. An iterator will run over these 12 matches and recursively
apply the same algorithm but in this case with only the fragments F2 and F3 with the
bound variable(s) matched from F1.

Eventually, all these recursive invocations would make up a complete result for the
given query. It is clear that the reduced server load requires more requests. Instead of
sending one complex SPARQL query to the server with the client waiting for a result,
the client now calculates the query itself while requesting all the required fragments
from the required URIs.

2.4.6 Results

From experiments performed [3] it is clear that the Triple Pattern Fragments approach
e↵ectively increases the average availability. However, there are some drawbacks. The
article shows that traditional SPARQL querying is significantly more performant (as
long as the endpoints are available), this is no surprise when taking into account the
increased number of request. Another drawback is mentioned, which says that clients
where bandwidth is limited (mobile phones), this increase request count could be a
problem. This is however not such a big problem since TPF allows for better query
caching.
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Chapter 3

Use Case: Basic Data Model

This chapter briefly discusses a use case regarding SPARQL queries on train departure
information. This use case will be used in the remainder of this document to illustrate
certain concepts. This chapter introduces a basic data model which will be extended in
Chapter 9 to perform measurements of the solution proposed in this work.

3.1 Problem Statement

We want to be able to request information about all train departures in the current train
station. Figure 3.1 displays the basic data model used to represent data departures. We
refer to this as the basic model, since later on di↵erent derived data models will be used
in the context of time annotation. A custom train ontology will be used to represent
these attributes as triples and will be referred to using the prefix t:. Table 3.1 shows a
description list of the information associated with a train departure. This use case will
assume a separate endpoint for each train station, so the train station itself will not be
part of the query.

The data will always contain an instance of this data model for each train that is
scheduled to depart from this station. When a new train is scheduled, a new instance
will be added. Each data model instance has three attributes that will remain the
same for its complete lifetime, these are marked in light grey on Figure 3.1. It also has
two attributes that can change in its lifetime, these are the nodes marked in dark grey
on Figure 3.1. When a train has left the station, the data provider can remove these
departure facts.

The data for this use case is retrieved from the iRail API [43] which is able to fetch
train departure information for all train stations in Belgium. Only the departures from
station “Gent-Sint-Pieters” are used, to simulate a user retrieving information for this
station. A Triple Pattern Fragments server will be used to hold this information. Every
ten seconds a request for all coming train departures at “Gent-Sint-Pieters” will be done

21



22 CHAPTER 3. USE CASE: BASIC DATA MODEL

t:delay
t:platform

t:headSign t:routeLabel

t:departureTime

Departure

Delay Platform

Headsign Route Label

Departuretime

Figure 3.1: Basic data model for representing train departures in one train station. The
dark grey nodes refer to dynamic data while other nodes are static.

Attribute name Description Datatype
Headsign Destination of the train as shown to the passengers. xsd:string
Departure time Scheduled departure time of the train in this station. xsd:dateTime
Route label Type of route followed by the train. xsd:string
Platform Station platform this train will depart from. xsd:string
Delay Train delay compared to its original departure time. xsd:duration

Table 3.1: Description of all train departure attributes used in the basic data model.

using the iRail API. Each departure already has a unique URI, so this is reused as the
resource around which all attributes about this departure will be added as triples. If a
certain departure is not yet available on the TPF server, a new instance from the basic
data model will be created as triples using the information from the API. The dynamic
triples about the delay and platform will receive a time annotation in a certain temporal
domain. For each subsequent request, the dynamic triples will be either updated or re-
created with another temporal range if their value remains the same, or they will be
(partially) re-created when their value changes. The chosen type of time annotation
and temporal domain will have a strong influence on this dynamic attribute update
behavior, so each of them will be explained in Chapter 7.



Chapter 4

Data Freshness

Simply stated, data freshness is a concept that can measure how old certain data is.
This can answer questions like: When was this data originally created/measured? Is
my current data version up-to-date with the known truth? Is this data fresh enough to
answer my questions within an accepted error margin?

This work aims on having a decent freshness of query results, so a review of data
freshness in general is in order. This overview is largely based on a framework for the
analysis of data freshness presented in previous work [44].

Data freshness can be analyzed as a family of quality factors [45] which can be measured
using corresponding metrics. Three sub-dimensions of freshness can be observed [44, 46].
The first type, also the most commonly used interpretation, is called currency [47]. It
describes the staleness of data when compared to the source(s). The next type is called
volatility [46], it indicates how long an item remains valid. The third type is called
timeliness [48]. It is used to describe how old data is relative to the change frequency.
In the following sections, these three interpretations will be further explained.

Even though the following explanation takes into account the need of data availability at
the client, in some cases clients could only need data at certain times. This complicates
the data freshness analysis, because the freshness measurements should only occur at
the times the data is needed at the client. For example, weather info on a mobile phone
is in some cases only required when the user looks at the screen, so as long as the data
is available when the user looks at the screen, the data is “fresh”.

23
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4.1 Classification

4.1.1 Currency

Currency [47], also known as staleness, is a factor that shows the “gap” in time between
the last data measurement or extraction from a certain source and the moment it is
reflected at the client. It deals with the speed of data updates.

For example, certain display websites of stock markets display a live time-counter which
shows the passed time starting from the moment the last update has been received.
This time-counter shows the currency of the stock data with the gap in this case being
between the time the central stocks server does a measurement and the time until the
moment the user is looking at the new data (this moment is constantly moving forwards
in time in this case). An important note in this example: In order to fully comply with
the definition of currency, these counters should start their counting from the moment
the server obtained the stock data instead of the moment the client receives the data.
This is because in certain scenarios, like this example, the propagation time could be a
signification contributor to the staleness measurements.

In fact, one could argue that the currency of this last example only gaps the time
between the stock server data extraction moment and the moment the data is first
displayed on the client machine. In this respect, the client is the machine instead of the
user as in the first example. An important conclusion from this is that the start- and
endpoint must always be well defined when using a currency metric.

4.1.2 Volatility

Volatility [46] indicates the frequency with which data can vary in time. Static facts
like George Washington was the first president of the United States always remain true,
so this will have a volatility of 0. An example of very volatile data are the oil prices,
because the time a certain price remains valid is very short.

4.1.3 Timeliness

This factor captures the notion of change frequency or create frequency of data in a
source.

For example, timeliness [48] indicates how frequently a simple cache is configured to
update all its entries. Or how often send-alive updates are sent from sensors to a central
system.
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4.2 Measurement

The following metrics can be used to measure a quality factor of data freshness. Each
of these metrics are also classified to one of the sub-dimensions explained in Section 4.1.

Currency metric (currency factor) This is the most logical derivation of a metric
for currency. This metric measures the passed time between the data change time at
the source and the delivery time at the client. Since change time of data is not always
possible to exactly know, this can be estimated as the data extraction time at the source,
so this could be for example a creation or update time of a tuple in a database. This
estimation is also used in the following metrics. Caching systems also define this metric
as recency or age and displays the time passed since a cache object was last cached. The
time unit of this metric is not defined by this definition, anything that can represent
time is allowed, for example milliseconds or years.

Formula: C = query-time � extraction-time

Obsolescence metric (currency factor) A discrete metric measuring the amount
of updates (full or partial) to the source data since the moment the client last extracted
data. This measurement can be done using an integrated audit tool that detects changes
[49] or by post-processing log files. The obsolescence has a direct relation to the change
frequency of data, so the one can be derived from the other. This metric is also often
called the age in caching systems.

Formula: O = count(data-updates-since-last-query)

Freshness-rate metric (currency factor) The freshness-rate is a metric repre-
senting the percentage of data (the level of data can be chosen, for example triples)
that is up-to-date with the source data. Caching systems mostly refer to this metric
simply as freshness. This ratio is usually expressed as a percentage.

Formula: F = count(up-to-date-data)/count(data)

Volatility metric (volatility factor) The volatility metric represents the inverse
duration for which data remains valid.

Formula: V = 1/data-valid-duration

Timeliness metric (timeliness factor) This is a direct metric derivation of the
timeliness of data. It is measured as the time elapsed since the last data update in
the source. It tells how appropriate the age of the data is for the given scenario. It is
similar to data volatility which measures the time interval wherein data is valid.
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Formula: T = query-time � data-update-time

When using the currency metric and timeliness metric, respectively the extraction-time
and data-update-time can di↵er when having one or more data elements. We define that
we always take the time of the oldest data element. When for example the data-update-
time for two web pages is measured with an “Index” page that has been updated 10
seconds ago, and a “Contact” page which has been updated 60 seconds ago, then the
collective data-update-time is 60 seconds, the age of the oldest page.

4.3 Dimensions for Analysis

Data freshness can be influenced by several di↵erent dimensions, the most important
ones are discussed below.

4.3.1 Nature of Data

When analyzing change frequencies of data, an easy classification into three categories
can be derived [44].

• Stable data: This is data that is assumed to be static. For example, names and
birthdays of people. Even though this data is assumed to be static, some scenario’s
could allow this data to change anyways when for example an error in the data
existed, even though this occurs rarely.

• Long-term changing data: Data that is not static, but does not change very often.
For example, the current Pope does not change frequently. The “low frequency”
of change is domain dependent.

• Frequently changing data: Data that is very volatile, this again is domain depen-
dent. For example, the current temperature in Austin, Texas.

Frequently-changing data is often provided in a push-based streaming fashion, where
clients register to a server that will immediately notify its listeners when a change occurs.
When using polling, the clients have to continuously send requests to the server. In
cases where the time that data remains unchanged can be predicted and modeled, the
clients can much more e�ciently send requests by only requesting at times the data is
changed.

4.3.2 Application Types

Not only does freshness of data depend on the freshness of the extracted data, it also
depends on the processes that are responsible for this extraction, together with the
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integration and delivery of the data. The reason for adding a separate dimension, is the
fact that each type of these processes can introduce some additional delay.

These types are observed in the context of so called Data Integration Systems (DISs).
These systems are responsible for obtaining data from data sources (in the context of
this research, also the server(s)), and passing this data to the client. This is illustrated
in Figure 4.1

Data Integration System

Figure 4.1: Data Integration System with data sources at the bottom and clients at the
top.

• Virtual systems: No materialization of data, incoming queries are always fully
calculated.

• Caching systems: Some or all data is cached. Estimations are done for how long
data in the cache will be valid, when that time is passed, relevant parts of cache
are invalidated so that the data in question has to be re-calculated.

• Materialized systems: Data is materialized at certain times and incoming queries
are answered using parts of that previously materialized data.

Certain freshness metrics can only be applied in certain dimensions, Table 4.1 shows
the co-relation of these dimensions.

Frequently changing Long-term changing Stable

Virtual Currency Timeliness, Volatility Timeliness, Volatility

Caching Currency, Obsolescence, Freshness-rate Timeliness, Volatility Timeliness, Volatility

Materialized Currency, Obsolescence Timeliness, Volatility Timeliness, Volatility

Table 4.1: Correlation of the data freshness dimensions in terms of the freshness metrics.
Nature of Data in the columns and Application Types in the rows.
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Chapter 5

RDF Annotations

In some cases, it is required to add additional info about certain data, this extra in-
formation is called metadata. We can for example have triples, which is our data, and
want to annotate them with a certain expiration time, which is the metadata.

The concept of annotating RDF is discussed in previous work [4]. The researchers
presented some domains, like temporal data, in which the annotation of triples is re-
quired. They compare reification with other quad-centric approaches by using a quad-
supporting syntax like N-Quads [5]. Note that not all RDF serialization types support
quads, so these quad-centric approaches can only be used in certain syntaxes. Another
approach was presented [6] in which Singleton Properties are introduced for instantiat-
ing generic predicates and thereby allowing metadata to be added to relations.

5.1 Reification

The concept of reification allows you to use subject, predicate and object as predicates,
which in combination with blank nodes allows the addition of annotations to RDF
triples. An example of reification can be seen in Listing 5.1. The reason reification
exists is because RDF did not include the concept of graphs until version 1.1, so another
way of annotating triples was required.

@prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http ://me.example.org/> .

Listing 5.1: The reified version of the triple :me foaf:workplaceHomepage <http://
me.example.org/> .

29
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SELECT ?name ?mbox ?hpage
WHERE {

GRAPH ?g {
?x foaf:mbox ?mbox .

}
?g a :certainDataset .

}

Listing 5.2: A SPARQL using the GRAPH keyword.

5.2 Singleton Properties

Researchers introduced Singleton Properties [6] as an alternative to reification. Which
is, in contrast with graph-based approaches like N-Quads, fully compatibly with the
original RDF 1.0. This means that this approach is fully triple-based. The idea is
to create unique instances (singletons) of properties, which then can be used for fur-
ther specifying that relationship by for example adding annotations. New instances of
properties can be created by using the sp:singletonPropertyOf property.

If we would for example have a triple :me foaf:workplaceHomepage <http://me.
example.org/>, then an instance of this relation can be created by writing the triple
foaf:workplaceHomepage#1 sp:singletonPropertyOf foaf:workplaceHomepage, and
the triple :me foaf:workplaceHomepage#1 <http://me.example.org/> would have
exactly the same meaning. Note that the naming of these instances would be better if
they were blank nodes, but since RDF does not allow blank nodes for properties, IRIs
have to be used here. Annotations can be added to this new singleton property without
a↵ecting the parent property.

It is also noted [6] that creating singleton properties for each relation could introduce
a lot of overhead, so this is not advised. These instances should only be created if
annotations are required and in some cases it is advised to cluster singleton properties
for relations with similar or equal metadata.

5.3 RDF Graphs

SPARQL standardized named graphs before RDF 1.1. It allows queries to contain
scoped triple patterns, with that scope being a certain graph. That graph is just
another resource that can be used inside other triples. An example for using the GRAPH
keyword can be found in Listing 5.2.

N-Quads recently became a W3C recommendation, and is a variant of Turtle which
allows encoding of multiple graphs. A paper [4] mentions two reasons for not using
these quad-centric approaches: a) They say none of them are W3C recommendations,
this is however not the case anymore, since february 2014 N-Quads has become a rec-
ommendation [5]. b) A lot of the existing RDF are not forwards compatible with this
new syntax, this is still the case. N-Quads can be used for serializing triples with their
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_:stmt rdf:subject :me ;
rdf:predicate foaf:workplaceHomepage ;
rdf:object <http ://me.example.org/> ;
tmp:interval [ tmp:initial

"2008 -04 -01 T09 :00:00Z"^^xsd:dateTime ;
tmp:final
"2009 -11 -11 T17 :00:00Z"^^xsd:dateTime ] .

Listing 5.3: A time-annotated triple using reification [4] representing the valid time in
an interval-based representation.

:me foaf:workplaceHomepage <http ://me.example.org/> _:c .
_:c tmp:interval [ tmp:initial

"2008 -04 -01 T09 :00:00Z"^^xsd:dateTime ;
tmp:final
"2009 -11 -11 T17 :00:00Z"^^xsd:dateTime ] .

Listing 5.4: A time-annotated triple using N-Quads [5].

relation to graphs. Alternatively, JSON Linked Data (JSON-LD) [50] can be used for
formatting triples into named graphs.

5.4 Time Annotation

An example of equivalent time-annotated triples using the three annotation approaches
(using the time vocabulary [31] introduced in previous work, see Subsection 2.2.5) can
be found in respectively Listing 5.3, Listing 5.4 and Listing 5.5.

5.5 Conclusion

There are several reasons for not using reification as a method of annotating triples.
The first reason is that the amount of triples in a dataset significantly increases when
having a lot of reified triples. This is because each triple has to be split up into three
separate triples, with an extra triple for each annotation. A second reason [51] is that
these reifications lack decent semantics which also causes queries targeted to non-reified
triples not being matched with reified triples (unless rule inferencing is in place).

foaf:workplaceHomepage #1 sp:singletonPropertyOf foaf:workplaceHomepage .
:me foaf:workplaceHomepage #1 <http ://me.example.org/> .
foaf:workplaceHomepage #1 tmp:interval [

tmp:initial "2008 -04 -01 T09 :00:00Z"^^ xsd:dateTime ;
tmp:final "2009 -11 -11 T17 :00:00Z"^^ xsd:dateTime ] .

Listing 5.5: A time-annotated triple using Singleton Properties [6] .
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Singleton properties are an improvement of reification on the condition that these prop-
erties can be clustered, both on their object resources and metadata, otherwise we have
the same problem as with reification.

Graphs are much more flexible than previous annotation types, the only disadvantage
is that many existing RDF parsers are not forward compatible with this.



Chapter 6

Streaming RDF

This chapter is dedicated to the study of continuous queries over RDF data streams.
Some applications require data to be continuously updated. This however, requires
some changes or extensions to the existing SPARQL protocol.

The problem with the current (Semantic) Web, is that even though data is increasingly
available, no system is su�ciently capable to answer questions that require systems to
handle rapidly changing data [52]. Examples [52] of such questions are: Where are all
my friends meeting? Which page on this website is the most popular? How many people
are walking on this bridge that originate from York? Data Stream Management Systems
(DSMSs) [53] can already analyze these types of questions, but they currently can not
reason over this data and do not support the Linked Data protocols (RDF, SPARQL).
Reasoners are much more processor heavy than DSMSs, because their reasoning is based
on temporal logic and belief revision. This could be good for changes at a low frequency,
but certainly not for high-speed streaming data. Stream reasoning is a research area
[52, 8] that aims to integrate data streams and reasoners to solve these issues.

6.1 Stream Reasoning

This section will further explain the concept of Stream Reasoning based on previous
work [52, 8].

Definition 4 (Stream Reasoning). Stream Reasoning is the logical reasoning in real
time on gigantic and inevitably noisy data streams in order to support the decision
process of extremely larger numbers of concurrent users.

Stream processing makes use of the terms window [53] and continuous processing [54]
which can be reused in the context of Stream Reasoning which will be explained here-
after. Stepsize, time-annotation and query registration are also frequently used concepts
in the Stream Reasoning domain.

33
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Window In Stream Reasoning, only a subset of facts which are most recently observed
are used for reasoning instead of taking into account all the available information. The
first reason for windowing this data is simply for saving computer resources to be able
to respond to real time events. The second reason is that real-time applications mostly
have the silent assumption that old information becomes irrelevant at a certain point,
which will be a window edge.

Stepsize If there only was one defined window in a stream, then we would assume
that the window edge always ends at the current moment. Meaning that if the window
size would be 1 hour, that every possible time a query would be issued, all the data up
until one hour before that would be taken into account. This requires the reasoner to
constantly update the contents of this window. A stepsize prevents this continuous re-
calculation of the window contents by only moving the window at the frequency defined
by that parameter. A stepsize of 15 minutes for example would mean that the window
is advanced every 15 minutes.

Continuous Processing Most reasoning engines have processes which have a defined
beginning and ending, initiating a request to the reasoner starts the process and it is
ended when the result is returned. Stream Reasoning is not based on this processing life
cycle, instead clients should register a query at the reasoner which then are continuously
evaluated with constantly changing data.

Query Registration Continuous Processing is a requirement [52] for stream rea-
soners. All queries from a certain client must be registered to a streaming-SPARQL-
endpoint once, and should continuously remain active. This way the server can immedi-
ately send new incoming query results to the client that issued the request. C-SPARQL
[55] for example extends the SPARQL syntax to allow REGISTER clauses with some
additional parameters about the desired update frequency. More details on this can be
found in Subsection 6.2.1.

Time Annotation C-SPARQL [55], among others, extends the existing RDF triples
to include timestamps. It does this by annotating triples by using a new tuple structure
with a timestamp T on which the triple is valid. These stream triples are monotonically
non-decreasing, but not strictly increasing, because there is no requirement for anno-
tated triples to be unique in the stream. A formal representation of an RDF stream
using these timestamps T can be found in Equation 6.1.

. . .

(hsubj
i

, pred
i

, obj
i

i, T
i

)

(hsubj
i+1, predi+1, obji+1i, Ti+1)

. . .

(6.1)
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There still exist a lot of issues and challenges [52] with Stream Reasoning. For example
the problem of (partially) incomplete information, and how to handle this in real-time
scenarios. Or the strict real-time constraints some systems require, which can currently
not even always be guaranteed with the non-streaming engines. Finally, a complete
formal theory of Stream Reasoning is still necessary with the requirements listed in
related work [52].

6.2 SPARQL Streaming Extensions

6.2.1 C-SPARQL

Continuous SPARQL (C-SPARQL) [7] handles static and continuously changing data
di↵erently in the context of querying. Just like Data Stream Management Systems
(DSMSs) [53], C-SPARQL requires registration of queries which will tell the server to
return new results to the client as new data becomes available. The example “How many
people are walking on this bridge that originate from York?” is a perfect example in the
case of C-SPARQL. Here we would have an RDF stream “Which people are walking on
this bridge?” and a static RDF part for “Which people originate from York?”.

In brief, C-SPARQL will map its queries to an internal model that is transformed
using specified methods to create queries that will intelligently distribute work between
DSMSs and SPARQL engines. The following sections summarize previous work on
C-SPARQL [7].

6.2.1.1 Additions to SPARQL

RDF Stream Data Type As explained in Section 6.1, an RDF stream is an ordered
sequence of pairs that consist of triples and their corresponding timestamp T .

Windows Data sources are identified using the FROM STREAM clause, instead of FROM
that is used for static RDF stores. Section 6.1 already explained the concept of windows.
These are selected from a stream as a RANGE parameter added to the new FROM STREAM
parameter. This window can either be physical or logical, they respectively indicate
a set number of triples and a time duration. Logical windows can be either sliding
or tumbling, which respectively means that the window progresses in a given step size
and the window progresses with the window size equal to the step size. An example
of this new clause can be seen in Listing 6.2, and the exact syntax of this is defined in
Listing 6.1.

Query Registration Because the output of the query needs to be continuously re-
turned, a query registration must happen. The frequency at which the query is com-
puted is determined by the server unless an optional COMPUTED EVERY clause is added



36 CHAPTER 6. STREAMING RDF

<from -stream -clause > ::= "FROM " <named > " STREAM" <IRI > "
[RANGE " <window > "]"

<named > ::= "NAMED" | ""
<window > ::= <logical -window > | <physical -window >
<logical -window > ::= <number > <time -unit > <window -overlap >
<time -unit > ::= "ms" | "s" | "m" | "h" | "d"
<window -overlap > ::= "STEP " <number > <time -unit > | "TUMBLING"
<physical -window > ::= "TRIPLES " number

Listing 6.1: The C-SPARQL FROM STREAM syntax.

PREFIX t: <http :// linkedurbandata.org/traffic#>

SELECT DISTINCT ?tollgate ?passages
FROM STREAM <http :// streams.org/citytollgates.trdf >

[RANGE 10m STEP 1m]
WHERE {

?tollgate t:registers ?car .
}

Listing 6.2: Example [7] of the C-SPARQL FROM STREAM clause.

to REGISTER QUERY. The full syntax can be seen in Listing 6.3. An example of the
query registration can be seen in Listing 6.4. The REGISTER clause on the first line is an
indication to the engine that this is a continuous query. After that, COMPUTE EVERY tells
with which frequency the query should be recomputed, this is in this case 15 minutes.
Line 2 is a simple SELECT clause that is identical to regular SPARQL, as is the FROM on
line 3. However, on line 4 we have a FROM STREAM clause. The previous FROM statement
assumes that the URI refers to static data, but FROM STREAM handles the URI as a
continuously updating stream. The RANGE clause on line 5 contains the window- and
stepsize, which are in this case respectively 1 hour and 15 minutes.

Stream Registration Instead of registering queries, streams can also be registered.
This can be used to create new streams from a certain query result. An important
requirement for the registered query in this case, is that they only can be of the types
CONSTRUCT or DESCRIBE. The reason for this is that the timestamp needs to encoded
into RDF, which is not possible in raw triple output from a SELECT query. The syntax
can be seen in Listing 6.5 and an example of this new clause is shown in Listing 6.6.

Multiple Streams SPARQL puts no restriction on the amount of streams that can
be queried at once. This uses the same semantics as the normal SPARQL GRAPHs as
explained in Subsection 2.3.1.

<registration > ::= "REGISTER QUERY " <string > <computed -every > "
AS" <sparql -query >

<computed -every > ::= "COMPUTED EVERY " <number > <time -unit >

Listing 6.3: The C-SPARQL query registration syntax.
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1 REGISTER QUERY NumberOfGiuliaFollowersWhoAreReadingBooks COMPUTE EVERY 15m
AS

2 SELECT count(distinct ?user) as ?numberOfGiuliaFollowersReadingBooks
3 FROM <http :// streamingsocialdata.org/followersNetwork >
4 FROM STREAM <http :// streamingsocialdata.org/reading >
5 [RANGE 1h STEP 15m]
6 WHERE {
7 ?user :follows :Giulia .
8 ?user :isReading ?x .
9 ?x a :Book .

10 }

Listing 6.4: Register a C-SPARQL-query [8].

<registration > ::= "REGISTER STREAM " <string > <computed -every >"
AS" <sparql -query >

<computed -every > ::= "COMPUTED EVERY " <number > <time -unit >

Listing 6.5: The C-SPARQL stream registration syntax.

REGISTER STREAM CarsEnteringCityCenterPerDistrict
COMPUTED EVERY 5m AS

CONSTRUCT {
?district t:has -entering -cars ?passages .

}
FROM STREAM <http :// streams.org/citytollgates.trdf >

[RANGE 30m STEP 5m]
WHERE {

?tollgate t:registers ?car .
?district c:contains ?street .
?tollgate c:placedIn ?street .

} AGGREGATE {(? passages ,
COUNT , {?district , ?tollgate , ?car})}

Listing 6.6: Register a C-SPARQL-stream-query [7].
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Timestamp Function A new function is introduced that can return the timestamp of
a given triple/resource. This new function takes one mandatory argument, the variable,
and one optional argument, the stream URI, that is defined with the GRAPH clause. This
can for example be used in the FILTER clause as follows: FILTER(timestamp(?car1)>
timestamp(?car2))

6.2.1.2 Definitions

This part will formally define the semantics of C-SPARQL, which will be reused in
other streaming engines as well. Refer to Subsections 2.2.1 and 2.3.4 for the basics of
the notations that will be used here.

RDF Stream An RDF Stream is defined asR = {(hsubj, pred, obji, T ) | hsubj, pred, obji 2
((U [ B)⇥ U ⇥ (U [ B [ L)), T 2 T} with T the infinite set of timestamps.
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Timestamp function ts(v,P) = max({x | t 2 P ^ v 2 dom(t) ^ x 2 TS
s

et(v, t)}),
with TS

s

et(v, t) the set of timestamps associated with a variable v and a triple pattern
t.

6.2.1.3 Architecture

As mentioned before, the C-SPARQL architecture consists of a static knowledge engine
for SPARQL combined with a DSMS. Previous work [7] mentions the use of Sesame
as a SPARQL engine and STREAM [53] as a DSMS. The first module of this archi-
tecture is the parser, that parses the C-SPARQL query and passes the result on to the
orchestrator. The orchestrator is the module that is responsible for delegation parts
of the original query to the static knowledge engine and the DSMS. This is done by
translating the query into a static and dynamic part. This delegation happens only
at registration time of the query, after that, the static and dynamic engines can keep
using the modified query input. Note that the delegation to the DSMS requires another
translation step from RDF to relational info. This translation also exists the other way
around, for transcoding the results of the stream manager back to RDF so that they
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can be combined with the static RDF data. An overview of this architecture can be
seen in Figure 6.1. A full example of this pipeline can be found in previous work [7].

C-SPARQL

Parser
Relational-to-RDF

Transcoder

Orchestrator

RDF-to-Relational Transcoder

Sesame
(SPARQL)

STREAM
(CQL)

Figure 6.1: Overview of the C-SPARQL architecture.

This deep integration of a DSMS inside the SPARQL engine is an advantage of C-
SPARQL compared to other approaches like Streaming SPARQL [15] or TA-SPARQL
[11]. These other approaches store the stream before processing it, which introduces
computational and storage overhead.

6.2.2 EP-SPARQL

Researchers [14] tried to close the gap between event processing systems and semantic
reasoners. Event processing systems are capable of processing real-time event streams,
but also only that. They are unable to integrate this real-time information with back-
ground knowledge. Semantic reasoning tools are only capable of processing static back-
ground knowledge, without those real-time events. Event Processing SPARQL (EP-
SPARQL) [14] is introduced to combine the best of these two worlds. What makes
EP-SPARQL di↵erent from other streaming SPARQL extensions, is that it is designed
with the requirement of reasoning over evolving knowledge. This means that next to
the traditional real-time queries like fetching the latest value of a given sensor, queries
over the evolution of data are also possible. An example of such a query is getting a
list of cities that are seeing a continuous drop in temperature during the last five days.

EP-SPARQL extends SPARQL by adding a set of binary operators and functions, which
will be briefly explained in the following.

6.2.2.1 Functions

Three new functions are added that can be used inside filter expressions. The first
function is getDURATION() which returns an xsd:duration literal that represents the
length in time of the corresponding graph pattern. The functions getSTARTTIME() and
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SELECT ?city
WHERE

{ ?city hasTemperature ?temp1 }
SEQ { ?city hasTemperature ?temp2 }
SEQ { ?city hasTemperature ?temp3
FILTER (

?temp3 < ?temp2 && ?price2 > ?price1
&& getDURATION () < "P3D "^^xsd:duration)

}

Listing 6.7: EP-SPARQL query asking for the cities with continuously dropping
temperatures for the past three days using the SEQ operator.

getENDTIME() return an xsd:dateTime literal that respectively indicate the start and
end date of the duration.

6.2.2.2 Operators

The binary operators SEQ, EQUALS, OPTIONALSEQ and EQUALSOPTIONAL add the ability
to combine graph patterns with the focus on the time of the graphs.

SEQ allows you to join graph patterns in such a way that for example P1 SEQ P2 indicates
that pattern P1 must happen strictly before P2, and these graphs will be joined if
this condition is met. This behavior can be illustrated with the previously mentioned
example of continuously dropping temperatures of cities, the associated query can be
found in Listing 6.7.

The EQUALS operator can be used to indicate that graph patterns must happen at
exactly the same time, and joins the graphs in that case.

The operators OPTIONALSEQ and EQUALSOPTIONAL work in a similar way, each combined
with the OPTIONAL behavior of SPARQL.

6.2.2.3 Architecture

The EP-SPARQL architecture is based on event-driven backward chaining (EDBC)
rules [56]. All queries are fully, both the static and dynamic parts, converted into
EDBC rules in ETALIS. ETALIS 1 is a Prolog-based event processing framework which
allows for event-driven reasoning on these events. This unified execution of both the
static and dynamic parts of the query is a big advantage of EP-SPARQL when com-
pared to related approaches, this removes the overhead of the communication between
background knowledge systems and streaming systems as is the case with C-SPARQL.

1https://code.google.com/p/etalis/

https://code.google.com/p/etalis/
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6.2.3 SPARQLStream

An ontology-based streaming data access service [9] is explained that can be queried
using the SPARQL

Stream

SPARQL extension. This approach is based on the mapping
definition language Relational-to-Ontology (R2O) [57] which allows conversion of data
sources. Similarly to R2O, a Stream-to-Ontology (S2O) mapper is introduced. Just
like in R2O, S2O allows you to define a set of mappings in terms of selections and
transformations of the data source, which is in this case a stream. Each ontology
requires it’s own S2O rules, which can become quite di�cult when querying many
di↵erent data stores.

A distinction of two types of streams is made [9]:

• Event streams: Streams in which tuples are generated at a variable rate.

• Acquisitional streams: Streams in which tuples are generated at a predefined
regular interval.

This approach focuses on the applications where older tuples become irrelevant once
newer tuples are generated, in contrast with the evolving knowledge requirement of
EP-SPARQL. The main di↵erence between this approach and C-SPARQL, is that the
results of SPARQL

Stream

queries are windows of triples which are defined in time,
instead of continuous streams.

6.2.3.1 Architecture

The system can accept queries using the SPARQL
Stream

language which extends SPARQL
by adding operators over streams. The query is transformed to the query language for
streams SNEEql [58], using predefined S2O mappings. The reason for using SNEEql, is
that it is able to query over both static and dynamic data. After the query processing
in SNEEql, the resulting tuples are transformed to RDF triples, which is what the client
expects.

An overview of this architecture can be seen in Figure 6.2.

The two-way conversion between streams (in SNEEql) and windows (in RDF) is an
essential part of this architecture. The windowing of streams is done in a similar
fashion as C-SPARQL, but with a slightly di↵erent syntax. This syntax being: FROM
start TO end [SLIDE int unit]. The stream to window conversion can occur in

three di↵erent modes that can be specified in the query definition: a) RSTREAM adds all
tuples to the window that appear in the stream, b) ISTREAM only adds those tuples to
the window that are new since the previous evaluation of the window and c) DSTREAM
only adds the tuples that have been deleted stream to the window.

An example of a SPARQL
Stream

query can be found in Listing 6.8.
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Ontology-based Streaming Data Access Service
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Figure 6.2: Overview of the SPARQL
Stream

architecture.

6.2.4 Streaming SPARQL

The Streaming SPARQL [15] approach goes to the foundations of SPARQL to add
stream processing capabilities by extending the logical SPARQL algebra. An algorithm
is also provided which can transform Streaming SPARQL queries to that extended
algebra.

Streaming SPARQL is very similar to that of C-SPARQL, with those di↵erences that
a) streaming queries do not need to be registered explicitly, so no REGISTER operator
exists, and b) the appendix of FROM STREAM is di↵erent, in this case it takes a WINDOW
parameter for which the syntax can be found in Listing 6.9. The physical window and
logical window are equivalent to the ones from C-SPARQL, respectively meaning that
each window contains a given number of triples and each window is defined by a given
range and step (slide) size. In fact, the fixed window from Streaming SPARQL is just
a logical window with a step size equal to the range, this is equivalent to the tumbling
window from C-SPARQL. This means that C-SPARQL and Streaming SPARQL are se-
mantically equivalent, except for the fact that C-SPARQL queries also take a parameter
in the REGISTER clause that defines at which interval the query needs to be executed,
while in this case that parameter is automatically derived from the step size.

An example equivalent to the C-SPARQL example from Listing 6.4 can be found in
Listing 6.10.

6.2.5 CQELS

Continuous Query Evaluation over Linked Stream (CQELS) [10] distances itself from
the “black box” approaches like C-SPARQL and EP-SPARQL by using a “white box”
approach. This means that CQELS implements all the query operators natively (white
box) without transforming it first to another system (black box) which results in a lot
less overhead. This approach also makes use of dynamic query rewriting to further
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PREFIX fire: <http :// www.semsorgrid4env.eu#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT RSTREAM ?WindSpeed
FROM STREAM <www.semsorgrid4env.eu/SensorReadings.srdf >

[FROM NOW - 10 MINUTES TO NOW STEP 1 MINUTE]
FROM STREAM <www.semsorgrid4env.eu/SensorArchiveReadings.srdf >

[FROM NOW - 3 HOURS TO NOW STEP 1 MINUTE]
WHERE {

GRAPH <www.semsorgrid4env.eu/SensorReadings.srdf > {
?WindSpeed a fire:WindSpeedMeasurement ;

fire:hasSpeed ?speed .
}
SELECT AVG(? archivedSpeed) AS ?WindSpeedHistoryAvg
WHERE {

GRAPH <www.semsorgrid4env.eu/SensorArchiveReadings.srdf > {
?ArchWindSpeed a fire:WindSpeedMeasurement ;

fire:hasSpeed ?archivedSpeed .
}

} GROUP BY ?ArchWindSpeed
FILTER (? WindSpeedAvg > ?ArchWindSpeed)

}

Listing 6.8: A SPARQL
Stream

query which checks the speeds of each sensor of the past
ten minutes that exceed all the speeds of the past three archived hours [9].

<window > ::= <logical -window > | <fixed -window >
| <physical -window >

<logical -window > ::= "WINDOW" "RANGE" <valspec > "SLIDE"
<optional -valspec >

<fixed -window > ::= "WINDOW" "RANGE" <valspec > "FIXED"
<physical -window > ::= "WINDOW" "ELEMS" <number >
<valspec > ::= <number > <time -unit >
<time -unit > ::= "MS" | "S" | "MINUTE" | "HOUR" | "DAY" | "WEEK" |

""
<optional -valspec > ::= <valspec > | ""

Listing 6.9: The Streaming SPARQL WINDOW syntax.

SELECT count(distinct ?user) as ?numberOfGiuliaFollowersReadingBooks
FROM <http :// streamingsocialdata.org/followersNetwork >
FROM STREAM <http :// streamingsocialdata.org/reading >

WINDOW 1 HOUR SLIDE 15 MINUTE
WHERE {

?user :follows :Giulia .
?user :isReading ?x .
?x a :Book .

}

Listing 6.10: A Streaming SPARQL-query equivalent to the C-SPARQL one in
Listing 6.4.
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<stream -graph -pattern > ::= "STREAM" "[" <window > "]" <var -or-iri >
"{" <triples -template > "}"

<window > ::= <range > | <triple > | "NOW" | "ALL"
<range > ::= "RANGE" <valspec > <optional -slide >
<triple > ::= "TRIPLES" <number >
<valspec > ::= <number > <time -unit >

| <valspec > <valspec >
<time -unit > ::= "d" | "h" | "m" | "s" | "ms"

| "ns" | ""
<optional -slide > ::= "SLIDE" <valspec > | ""

Listing 6.11: The CQELS stream graph pattern syntax.

SELECT ?locName ?locDesc
FROM NAMED <http :// deri.org/floorplan/>
WHERE {

STREAM <http :// deri.org/streams/rfid > [NOW] {
?person lv:detectedAt ?loc .

}
GRAPH <http :// deri.org/floorplan/> {

?loc lv:name ?locName. ?loc lv:desc ?locDesc .
}
?person foaf:name "Bob Peters" .

}

Listing 6.12: CQELS query to get the name and description of the current location of
Bob [10].

increase the performance of the engine. By using dictionary encoding [59], the engine
can e�ciently store much more data in the machine’s memory for faster processing.
This combined with a caching and indexing system allows for very fast data look-ups.

The syntax of CQELS is very similar to that of C-SPARQL and Streaming SPARQL,
with that di↵erence that the streams must be declared as graph patterns with an IRI
as identification, the full syntax can be found in Listing 6.11. An example of a simple
query can be found in Listing 6.12.

Results [10] show that CQELS performs a lot better than C-SPARQL and EP-SPARQL
for large datasets, in some cases with large datasets this engine is 700 times faster than
the two others. The white box approach is the main contributor for these results. Only
for simple queries and small datasets C-SPARQL and EP-SPARQL could sometimes
outperform CQELS.

6.2.6 TA-SPARQL

A paper [11] introduced Time-Annotated RDF (TA-RDF) together with the corre-
sponding SPARQL extension Time-Annotated SPARQL (TA-SPARQL).

TA-RDF is based on the idea of time-annotating resources instead of the full triple.
This allows for a representation inside native RDF. These resources are represented in
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SELECT sum(?rain)
WHERE {

<urn:OHARE > <urn:hasRainSensor >
?x["2009 -01 -01Z -06:00"^^ xsd:date ..

"2009 -01 -31Z -06:00"^^ xsd:date] .
?x <urn:hasReading > ?rain .

}

Listing 6.13: TA-SPARQL query to find the total amount of rain in Chicago in January
2009 [11].

regular triples with the semantics that they are all part of a stream, so the resources
are frames of the stream. The new property dsv:belongsTo is added to these resources
to indicate to which stream this resource belongs to. The property dsv:hasTimestamp
indicates the exact timestamp of that resource inside the stream, this can be a literal
or the dsv:Nil resource for when the timestamp is unavailable. A frame having the
dsv:belongsTo property, implies that this subject inherits all the properties of the
target stream. A frame is also restricted to be part of only one stream with only one
timestamp.

The TA-SPARQL extension adds a set of new constructs that can be used to very easily
query over a range of time or at specific moments in time. All of the additions can be
translated to an equivalent SPARQL 1.1 representation. The new constructs are briefly
explained here, the details of the transformation to native SPARQL can be found in
related work [11]. Subjects in TA-SPARQL can be appended with a date or time range
between square brackets to look for certain triple patterns. An example of such a query
can be found in Listing 6.13.

The implementation of the TA-SPARQL query engine was done in a black box way, by
delegating the static part of the query to a simple RDF store and the dynamic part to
a usecase-specific stream indexer.

6.2.7 Conclusion

Based on previous work [60, 61, 10] and the SPARQL extension summaries in the previ-
ous subsections, Table 6.1 shows a brief overview of the most important characteristics
of these extensions.
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Approach Characteristics
C-SPARQL • Query registration

• Time windows
• Black box query processing with STREAM and Sesame
• Reasoning over temporal knowledge

EP-SPARQL • Event processing
• No time windows
• Immediate event processing at occurrence time
• Black box query processing with ETALIS
• Reasoning over temporal and evolving knowledge

SPARQL
Stream

• Stream-to-Ontology (S2O) mapping rules
• Time windows
• Black box query processing with SNEEql
• Reasoning over temporal knowledge

Streaming SPARQL • Query registration
• Time windows
• White box query processing by extending logical SPARQL algebra
• Reasoning over temporal knowledge

CQELS • Time windows
• White box query processing by native implementation
• Significant performance advantage

TA-SPARQL • Direct access to time annotations
• Implicit time windows
• Black box query processing with RDF store and custom stream indexer
• Reasoning over temporal and evolving knowledge

Table 6.1: Overview of the most important characteristics for some streaming SPARQL
extensions.



Chapter 7

Dynamic Data Representation

7.1 Temporal Domains for Timeliness

This section will discuss di↵erent ways on how temporal domains1 can be used to reach
a su�cient data timeliness for representing the volatility of data. This section will focus
on the semantics of representing this frequency, while the next section will go deeper
into the syntactical details. Several types of metadata for representing data volatility
will be compared. First, a very generic but complex approach will be explained. After
that, two more simple approaches of temporal domains [31, 4] will be explained in
Subsection 2.2.5. At the end of this chapter, a conclusion will be made about which
approach is the best for this research.

As was already explained in Subsection 2.2.5, versioning of the complete graph might
be not the best choice for annotating data in this context, so the idea of time labeling
for certain triples will be used.

7.1.1 Volatility Pattern Formula

A very generic approach for representing the volatility of certain data is by using a
mathematical formula which can be evaluated to find the next the data update time.
The data provider would have to annotate dynamic data with such a formula. The
client would then evaluate that function and find out when the data will be updated.
Examples of function arguments could be the current client time, amount of requested
updates on that data element and elapsed time since the first data retrieval. These
types of function arguments could di↵er in other use cases and might even be declared
inside that same annotation.

This approach is very generic and could be used in many di↵erent use cases, it is however

1
Temporal domains in this work refer to methods for representing the dynamism of data.

47
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too complex for our solution. There are several reasons for not using this approach for
our use case.

a) Finding a volatility pattern formula for a data element can be very complex for the
server. Advanced pattern matching algorithms might be required in some cases, which
are not within the scope of this work. b) Evaluation at client side can also become very
complex. Depending on the desired form of the function, evaluation algorithms such as
root-finding might be required. This evaluation can become too expensive for the client
when they have limited computational power, or when the evaluation must be done at
a high frequency. c) Declaring and interpreting the functions as part of an annotation
can also be non-trivial. Since we are working in RDF datasets, ontologies based on
MathML [62] or OpenMath [63] could be a solution to this.

While this approach is very generic and might be an interesting future research topic, it
is currently too complex for our desired use case. So more simple, but still su�ciently
expressive approaches will be discussed in following sections.

7.1.2 Time Interval and Expiration Time

Subsection 2.2.5 explained the di↵erence between valid and transaction times. We can
use the valid times to indicate in which time interval the facts are valid in the world. We
refer to these valid times using interval-based labeling, where facts are annotated with
an initial and final time. Interval-based labeling can be desired when we need multiple
instances of the same fact, possibly with di↵erent values, that are valid in their own
time range. This type is required for scenarios where historical data is important, for
example when the complete history of delays in a certain train station is required for
some kind of reasoning.

Note that the term fact is here always used to refer to all versions of a certain knowl-
edge element. For example, the dynamic fact “delay of departure with id train1234”
contains all the versions of that fact each having di↵erent time intervals. This is slightly
di↵erent than the RDF definition of fact, which just refers to a triple. In the remainder
of this document, the former definition will be used.

Instead of using interval-based labeling, we can also use point-based labeling. Point-
based labeling is based on the transaction times explained in Subsection 2.2.5 where
each fact version is annotated with just one timestamp, in this case the moment in time
this version expires. This type of annotation is advantageous in cases where only one
instance of a fact is available in a dataset at a given time. This would require the data
provider to constantly overwrite that fact with its new value and expiration time.

Annotation with the interval approach requires two elements for each dynamic resource,
the initial and final time of the interval. Annotation with the expiration approach only
needs the expiration time to be appended to the fact. When using time intervals, the
data provider is responsible for making sure that when each interval expires, a new
consecutive interval is created. Dynamic facts that have no valid interval at a given
time are undefined for that time. In case of the expiration times, the data provider is
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again responsible for the addition of new expiration times to avoid undefined facts at a
given time. The expiration times can be consecutive if the semantics of the fact indicate
that the previous expiration time should be interpreted as the beginning of valid time
interval, and the current expiration time as the end of this interval.

7.1.3 Influence of Data Volatility

The sole existence of the last known fact value when using expiration times can be
seen as a disadvantage because of the loss of history. But this is at the same time a
big advantage when this dynamic data is very volatile. When using time intervals for
many volatile facts, a lot of consecutive interval-based facts would quickly accumulate.
Without a decent way of removing or aggregating old data, this will eventually result in
an unmanageably large dataset, causing slow query executions. When using expiration
times, the data volatility will have no influence on the size of the dataset, since the facts
will always be overwritten when the old versions expire.

7.1.4 Conclusion

As was already mentioned, the first approach that is based on a mathematical formula
is considered too complex for our research. Both interval-based and pointed-based time
labeling are fitting solutions for our problem, we will refer to these two as types of
temporal domain.

7.2 Methods for Time Annotation

While the previous section focussed on the semantics of time annotation, this section
will explain the syntactical details. Several types of time annotation will be discussed
here. This chapter will build further upon the annotation concepts that were explained
in Chapter 5.

All of the following types will be illustrated by declaring dynamic information about
certain train departures, more specifically the platform each train departs from. This
will each time be done for both the time interval and expiration time approach. The
timeliness of the fact is assumed to be one minute in these cases, but this could be
any frequency and must not be uniform across time and triples. After this minute,
the data provider has to make sure that a new time-annotated fact is available with a
time interval or expiration time of a consecutive minute containing the platform at that
time, unless of course the train has already departed. This mechanism doesn’t actually
change after the train departure, but the expiration time becomes infinity.

The train platforms will be declared in the form of the triple ?id t:platform ?
platform with the variable ?id containing a unique URI for a train departure and
?platform containing a platform name encoded as a string. Listing 7.1 shows the
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@prefix t: <http :// example.org/train > .
@prefix departure: <http :// example.org/traindata/departures > .
@prefix platform: <http :// example.org/traindata/platform > .
@prefix tmp: <http :// example.org/temporal > .

departure :4815 t:platform platform :1a .
departure :1623 t:platform platform :8 .
departure :42108 t:platform platform :12 .

Listing 7.1: Original train platform triples before time annotation is added to them.

triples which will be used as a source of train platform information. These triples are a
snapshot of a certain unknown moment in time. Time information will be added using
various ways of annotation, some of which will be discussed in the following subsections.

Each of these subsections will contain a triple-count function f(t) showing the amount
of triples required to represent this data with its annotation in function of the original
amount of triples all facts, t. For the example the Listing 7.1 contains three triples,
so this original value t would be three in this case. Note that this function is limited
to one fact, if we would annotate two di↵erent facts with time, two separate functions
would be needed to calculate the amount of triples required.

7.2.1 Reification

This first type of annotation is considered to be the least e�cient way of adding infor-
mation to facts in terms of triple count. The original triples are reified using a unique
subject for each triple, possibly by using a blank node. This subject is then used to add
additional information to, this would be either a time interval or an expiration time.

Listing 7.2 and Listing 7.3 show the reified form of the triples from Listing 7.1 using
respectively time interval annotation and expiration times.

The major disadvantage of reification is the large number of of triples that is required
to represent a reified fact. This reification must be done for each fact, resulting in
a large overhead of shared information that could be avoided when using a di↵erent
type of annotation. In this case we need five triples per fact when using interval-based
annotation and four triples when using expiration times, which is in either case a huge
increase of triples. When using this type of annotation for all departures in every
possible train station, this can quickly become very large.

Listing 7.4 shows a better way for the time interval representation. In this case, the
intervals of the di↵erent reified triples can be grouped together so that the interval
only has to be declared once. This results in the same amount of triples as with the
expiration times plus two triples. This doesn’t take away the fact that four triples per
fact is still a lot.

The issue with volatile data as was explained in Section 7.1.3 is severly worse when
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_:stmt1 rdf:subject departure :4815 .
_:stmt1 rdf:predicate t:platform .
_:stmt1 rdf:object platform :1a .
_:stmt1 tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^ xsd:dateTime .
_:stmt1 tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^ xsd:dateTime .

_:stmt2 rdf:subject departure :1623 .
_:stmt2 rdf:predicate t:platform .
_:stmt2 rdf:object platform :8 .
_:stmt2 tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^ xsd:dateTime .
_:stmt2 tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^ xsd:dateTime .

_:stmt3 rdf:subject departure :42108 .
_:stmt3 rdf:predicate t:platform .
_:stmt3 rdf:object platform :12 .
_:stmt3 tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^ xsd:dateTime .
_:stmt3 tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^ xsd:dateTime .

Listing 7.2: Dynamic train platform triples using reification with time intervals.

_:stmt1 rdf:subject departure :4815 .
_:stmt1 rdf:predicate t:platform .
_:stmt1 rdf:object platform :1a .
_:stmt1 tmp:expiration "2014 -10 -02 T12 :01:00Z"^^ xsd:dateTime .

_:stmt2 rdf:subject departure :1623 .
_:stmt2 rdf:predicate t:platform .
_:stmt2 rdf:object platform :8 .
_:stmt2 tmp:expiration "2014 -10 -02 T12 :01:00Z"^^ xsd:dateTime .

_:stmt3 rdf:subject departure :42108 .
_:stmt3 rdf:predicate t:platform .
_:stmt3 rdf:object platform :12 .
_:stmt3 tmp:expiration "2014 -10 -02 T12 :01:00Z"^^ xsd:dateTime .

Listing 7.3: Dynamic train platform triples using reification with a expiration times.

_:stmt1 rdf:subject departure :4815 .
_:stmt1 rdf:predicate t:platform .
_:stmt1 rdf:object platform :1a .
_:stmt1 tmp:interval _:interval1

_:stmt2 rdf:subject departure :1623 .
_:stmt2 rdf:predicate t:platform .
_:stmt2 rdf:object platform :8 .
_:stmt1 tmp:interval _:interval1

_:stmt3 rdf:subject departure :42108 .
_:stmt3 rdf:predicate t:platform .
_:stmt3 rdf:object platform :12 .
_:stmt1 tmp:interval _:interval1

_:interval1 tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^ xsd:dateTime .
_:interval1 tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^ xsd:dateTime .

Listing 7.4: Alternative representation of the dynamic train platform triples using
reification with time intervals.
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<http :// example.org/sp1 > sp:singletonPropertyOf t:platform .
<http :// example.org/sp1 > tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^xsd:

dateTime .
<http :// example.org/sp1 > tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^xsd:

dateTime .

departure :4815 <http :// example.org/sp1 > platform :1a .
departure :1623 <http :// example.org/sp1 > platform :8 .
departure :42108 <http :// example.org/sp1 > platform :12 .

Listing 7.5: Dynamic train platform triples using singleton properties with time
intervals.

<http :// example.org/sp1 > sp:singletonPropertyOf t:platform .
<http :// example.org/sp1 > tmp:expiration "2014 -10 -02 T12 :01:00Z"^^xsd:

dateTime .

departure :4815 <http :// example.org/sp1 > platform :1a .
departure :1623 <http :// example.org/sp1 > platform :8 .
departure :42108 <http :// example.org/sp1 > platform :12 .

Listing 7.6: Dynamic train platform triples using singleton properties with a expiration
times.

using reification. Because with interval-based annotation not only one triple would be
created when an interval expires, but five new triples would be added for each dynamic
fact.

The triple-count functions for reification annotation can be found in 7.1.

f
R interval

(t) = 5 ⇤ t (7.1a)

f
R expiration

(t) = 4 ⇤ t (7.1b)

f
R interval better

(t) = 4 ⇤ t+ 2 (7.1c)

7.2.2 Singleton Properties

Singleton properties were introduced as an improvement to the reification approach.
In this case, singleton properties are created for each of the dynamic triple predicates.
As was noted in Chapter 5, creating singleton properties for each relation introduces
overhead and should be avoided. This is we created one singleton property which is
reused for each annotation of that type.

Listing 7.5 and Listing 7.6 respectively show the singleton properties transformation of
the triples from Listing 7.1 using time interval annotation and expiration times.

As can be seen in these examples, fewer triples are required to declare the same infor-
mation as with reification. Only one extra triple is required for the entire block when
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<http :// example.org/graph1 >
{

departure :4815 t:platform platform :1a .
departure :1623 t:platform platform :8 .
departure :42108 t:platform platform :12 .

}

<http :// example.org/graph1 > tmp:intervalInitial "2014 -10 -02 T12 :00:00Z"^^
xsd:dateTime .

<http :// example.org/graph1 > tmp:intervalFinal "2004 -04 -12 T12 :01:00Z"^^xsd:
dateTime .

Listing 7.7: Dynamic train platform triples using explicit graphs with time intervals.

compared to the original static triples, excluding the actual temporal domain triples.
But it should be noted that this form of “compression” can only be achieved within
clusters of dynamic triple that have the same predicates. If we would for example in
this case also wish to add the dynamic facts of train delays, another separate singleton
property would be required.

There is however another improvement possible. Even though only two or three triples
are required to add the actual annotation information, the singleton property itself still
has to be declared as well. So this singleton property declaration is purely overhead
when compared to the solutions discussed in next sections.

The triple-count functions for singleton property annotation can be found in 7.2.

f
SP interval

(t) = t+ 3 (7.2a)

f
SP expiration

(t) = t+ 2 (7.2b)

7.2.3 Explicit Graphs

This and next section is based on the idea of graphs. This section uses regular graphs
as they were introduced in RDF 1.1.

Listing 7.7 and Listing 7.8 respectively show the explicit graph approach using time
interval annotation and expiration times in the TriG [26] syntax.

This approach is very similar to the singleton properties annotation type. Instead of
annotating the common predicate of the triples, the context of the triples is annotated.
This solves the overhead problem of adding a separate triple to declare the singleton
property.

Even though this is a very concise and easy method of annotating data, there is still the
fact that dynamic triples have to be declared within a certain context, which requires
prior knowledge of this context. That is what the approach explained in next section
will try to circumvent.
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<http :// example.org/graph1 >
{

departure :4815 t:platform platform :1a .
departure :1623 t:platform platform :8 .
departure :42108 t:platform platform :12 .

}

<http :// example.org/graph1 > tmp:expiration "2014 -10 -02 T12 :01:00Z"^^xsd:
dateTime .

Listing 7.8: Dynamic train platform triples using explicit graphs with a expiration
times.

The triple-count functions for explicit graph annotation can be found in 7.3.

f
EG interval

(t) = t+ 2 (7.3a)

f
EG expiration

(t) = t+ 1 (7.3b)

7.2.4 Implicit Graphs

Up until now, all types of annotation discussed in this chapter are supported at SPARQL
endpoints adhering to RDF 1.1. If it is taken into account that a TPF endpoint is used,
another interesting way of representing graphs becomes possible.

Triple Pattern Fragments can be selected by subject, predicate and object. This means
that each triple can be found by using the elements of itself for finding the Triple Pattern
Fragment of itself. This implies that each triple has in fact a unique URI when using
TPF. And thereby each triple has a unique implicit graph attributed to it, which is
identified by a URI that can be used in other triples.

Asuming there is a TPF interface at http://example.org/endpoint/train, List-
ing 7.9 and Listing 7.10 respectively shows the implicit graph approach using time
interval annotation and expiration times.

Graphs are now implicitly defined, but now there is the problem that each of these
implicit graphs must have their own separate time annotation, since these implicit
graphs cannot as easily be grouped anymore. This is however something that might be
interesting to research further in the future, a possible solution could intelligently make
use of HTTP redirects for allowing implicit graph clustering.

A major advantage of this approach when compared to all previous annotation types
is the fact that this is fully compatible with clients who are not aware of the time
annotations of these dynamic triples. This is because the triples of Listing 7.1 are
exactly available in the Listings 7.9 and 7.10. This means that regular clients can query
this data and will assume that this is static data, which might be focused over the
alternative where this data is encapsulated in some other triple structure as is the case
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departure :4815 t:platform platform :1a ?graph1 .
departure :1623 t:platform platform :8 ?graph1 .
departure :42108 t:platform platform :12 ?graph1 .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /4815& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /1a> tmp:intervalInitial
"2014 -10 -02 T12 :00:00Z"^^xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /4815& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /1a> tmp:intervalFinal
"2004 -04 -12 T12 :01:00Z"^^xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /1623& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform/8> tmp:intervalInitial
"2014 -10 -02 T12 :00:00Z"^^xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /1623& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform/8> tmp:intervalFinal "2004 -04 -12
T12 :01:00Z"^^ xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /42108& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /12> tmp:intervalInitial
"2014 -10 -02 T12 :00:00Z"^^xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /42108& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /12> tmp:intervalFinal
"2004 -04 -12 T12 :01:00Z"^^xsd:dateTime .

Listing 7.9: Dynamic train platform triples using implicit graphs with time intervals.

departure :4815 t:platform platform :1a ?graph1 .
departure :1623 t:platform platform :8 ?graph1 .
departure :42108 t:platform platform :12 ?graph1 .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /4815& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /1a> tmp:expiration "2014 -10 -02
T12 :01:00Z"^^ xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /1623& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform/8> tmp:expiration "2014 -10 -02 T12
:01:00Z"^^ xsd:dateTime .

<http :// example.org/endpoint/train?subject=http :// example.org/traindata/
departures /42108& predicate=http :// example.org/train/platform&object=
http :// example.org/traindata/platform /12> tmp:expiration "2014 -10 -02
T12 :01:00Z"^^ xsd:dateTime .

Listing 7.10: Dynamic train platform triples using implicit graphs with a expiration
times.
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Triple-count Quads TPF Backwards compatible

Reification

f
R interval

(t) = 5 ⇤ t
f
R expiration

(t) = 4 ⇤ t
f
R interval better

(t) = 4 ⇤ t+ 2

no no no

Singleton Properties
f
SP interval

(t) = t+ 3

f
SP expiration

(t) = t+ 2
no no no

Explicit Graphs
f
EG interval

(t) = t+ 2

f
EG expiration

(t) = t+ 1
required no no

Implicit Graphs
f
IG interval

(t) = t+ 2

f
IG expiration

(t) = t+ 1
no yes yes

Table 7.1: Overview of the most important characteristics of the di↵erent annotation
types. The column triple-count contains the triple-count functions in terms of the
original required amount of triples t. Quads indicates whether the annotation type
requires the concept of quads. TPF indicates if the annotation type requires a Triple
Pattern Fragments interface. The last column indicates whether or not the annotation
type allows regular clients to retrieve the dynamic facts as static data.

with the previous annotation types. Clients who are able to detect them as dynamic
triples will be able to retrieve their time annotation.

The triple-count functions for implicit graph annotation can be found in 7.4.

f
IG interval

(t) = t+ 2 (7.4a)

f
IG expiration

(t) = t+ 1 (7.4b)

7.2.5 Conclusion

From Table 7.1 it is clear that reification should be avoided in any possible scenario
because of the large triple count. If the need exists to support RDF 1.0, singleton
properties will be the best solution as they can be encoded using only triples. If com-
patibility is required for clients who are not aware of these time annotations, implicit
graphs should be used, assuming a TPF endpoint is used. If neither of these require-
ments are applicable, graphs might be used.



Chapter 8

Solution

This chapter will explain the details of the proposed solution to formulate an answer to
the research questions. First, the required changes to the TPF server will be explained,
more specifically the changes required to the data model. After that, the architecture of
the query streamer will be explained in a generic way. Meaning that this architecture
can be used for any type of temporal domain and time annotation as presented in
Chapter 7. Finally, some important remarks on this solution requiring some additional
attention are discussed.

Our solution requires an extra software layer on top of the Triple Pattern Fragment
client to be able to handle dynamic triples. The Triple Pattern Fragment server only
requires a very small addition in case a graph-based annotation approach is used. This
is because at the time of writing, the TPF server and client implementation do not
support graphs.

8.1 Server Time Annotation

Data providers wishing to o↵er dynamic, i.e. time-sensitive triples, are required to first
choose the temporal domain for these triples. If multiple temporarily ordered versions
of the same fact are of interest, the interval-based approach should be used. When
only the last version of a certain fact is required, time annotation by expiration times
should be used. This is because time interval annotation allows you to declare multiple
versions of the same fact with a di↵erent time range, while expiration times contain less
information about this time range which makes them unsuitable for declaring multiple
versions. The latter will have a constant amount of fact versions as long as the amount
of di↵erent facts stays constant, while the former will result in a continuously growing
dataset, possibly requiring some way of mitigating this continuous growth.

Depending on the data volatility, an update frequency has to be determined to update
the dynamic facts to achieve a desired level of data currency. One could synchronize

57



58 CHAPTER 8. SOLUTION

the timeliness with its volatility if this frequency is somehow predictable. For example,
temperature sensors performing measurements each minute can easily be synchronized
with the update frequency in the dataset that will store this data. If the data volatility
can not be predicted, or is too complex, an update frequency could be determined
by using statistical models. In some cases, the data volatility is unbounded, meaning
that the data is di↵erent every time a measurement is done. In which case the update
frequency can be altered depending on the temporal importance. For example in case
of the train delay updates, an exponential increase of updates could be done when the
train departure is nearing, with a complete stop of updates after that train has finally
departed.

The next choice the data provider has to make is which implementation of time an-
notation they will use. This choice will have an influence on both the triple storage
e�ciency and the technology required to query this data.

8.2 Query Streamer

The query streamer is an extra layer on top of the Triple Pattern Fragments client. No
changes are required to the basic TPF client, except for the addition GRAPH support
when the graph annotation approach is in use.

This extra layer acts as a proxy for executing queries. The client can execute regular
SPARQL queries against this layer. In case the query streamer detects that the given
query requires result streaming, the results will be streamed to the client, otherwise the
single static query results will be given to the client only once.

When the user sends a query to this client, the rewriter module will split up this query
into a static and dynamic part using metadata from the triple patterns. The dynamic
part is then forwarded to the streamer module, the static part is stored for later usage.
The streamer module is able to execute a dynamic query, after which the results are
sent to the time filter.
The time filter analyses all dynamic query results, and selects only those that are
currently active.1 Using these filtered results, a new execution time for the dynamic
query is calculated and a new callback to the streamer is scheduled. These filtered
results are also forwarded to the materializer module.
At the materializer, the dynamic query results are filled into the static query that
results into materialized static queries which are then forwarded to the proxy cache.
The result manager will look up previous results of those materialized queries in its
cache, or otherwise execute them against the TPF client. Results for each of those
materialized queries are then sent to the client.

Note that the principle of caching static queries has been ingrained into the architecture.
If this caching is not required because for example all possible queries are fully dynamic
in nature, several modules in this process could be skipped. The rewriter could simply

1
Currently active in this context means that the triple has a time annotation which indicates that

is is valid for the current timestamp.
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forward any incoming query as a dynamic query and returning no static query, this
would result in the full query execution by the streamer and this would make it
possible to completely skip the materializer, result manager and cache modules.

Figure 8.1 shows an overview of this process. Each step in this process will be explained
in detail in the following subsections.

The rewriter module can be considered as the most complex module in this archi-
tecture. The basics of this module will be explained first, together with the basics of
the other modules. Section 8.3 will finally discuss some edge cases that are possible
regarding the rewriter module.

Client

Query Streamer

Rewriter

Streamer

Materializer

Time Filter

Result
Manager

Cache

Basic Graph Iterator

TPF Server

SPARQL query

Metadata query Metadata results

Dynamic query

Static query

Dynamic query Dynamic results

Dynamic results

Delayed call

Materialized
static queries +
Dynamic results

Materialized static
query

Materialized static
query results

Static results

Query results

Figure 8.1: Overview of the proposed architecture.

8.2.1 Rewriter

The rewriter is responsible for splitting up the original query into a static and dy-
namic query. This module is only called once for each incoming query, it is part of the
preprocessing.
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PREFIX t: <http :// example.org/train#>

SELECT ?delay ?departureTime ?headSign
WHERE {

_:id t:delay ?delay .
_:id t:departureTime ?departureTime .
_:id t:headSign ?headSign .

}

Listing 8.1: SPARQL query for requesting the delay, departure occurringtime and head
sign for all trains that will be split up into a static and dynamic part.

PREFIX t: <http :// example.org/train#>

SELECT ?delay ?final
WHERE {

GRAPH ?stmt {
_:id t:delay ?delay .

}
?stmt tmp:expiration ?final .

}

Listing 8.2: Temporary SPARQL query for the first triple pattern from Listing 8.1 to
check if it is dynamic.

To illustrate the workings of this module, the query from Listing 8.1 will be used as
input to this module. The examples in this chapter will always use graph-based time-
annotation based on expiration times. For the sake of the example, we will assume
that the first triple pattern of this query is dynamic, and the two following patterns are
static. The pattern being dynamic means that it is time-annotated in some data store.

An important requirement for this module, is that it must be able to distinguish static
from dynamic triple patterns. One way of doing this is by making a new temporary
query for every triple pattern and assume it is time annotated. Each temporary query
is then executed against the TPF client. If this query results in at least one match, then
this triple pattern is assumed to be dynamic. Otherwise, if no results were found, the
triple pattern does not have a time annotation and is assumed to be static. Listing 8.1
shows an example of such a query for the first triple pattern from the query in Listing 8.1.
Since this triple pattern truly is time annotated, this query will have a non-empty result,
and the algorithm will mark this pattern as dynamic.

Another step before the actual query splitting is the conversion of blank nodes to
variables. To understand why this step is required, one has to look at the end result
of the query splitter. We will end up with one static query and one dynamic query,
in case these graphs were originally connected, they still need to be connected after
the query splitting. This connection is only possible with variables that are visible,
meaning that these variables need to be inside the SELECT clause. However, a variable
can also be anonymous and not visible, these are blank nodes. To make sure that we
take into account blank nodes that connect the static and dynamic graph, the blank
nodes have to be converted to variables, while maintaining their semantics. This means
that a) two identical blank nodes occurring in di↵erent triple patterns must eventually
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PREFIX t: <http :// example.org/train#>

SELECT ?id ?departureTime ?headSign
WHERE {

?id t:departureTime ?departureTime .
?id t:headSign ?headSign .

}

Listing 8.3: Static SPARQL query created from the query in Listing 8.1.

PREFIX t: <http :// example.org/train#>

SELECT ?id ?delay
WHERE {

GRAPH ?stmt {
?id t:delay ?delay .

}
?stmt tmp:expiration ?final .

}

Listing 8.4: Dynamic SPARQL query created from the query in Listing 8.1.

have the same variable. And b) newly introduced variables must not mutually collide
and must not collide with existing variables.

The rewriter will iterate over all the triple patterns in the original query. Each triple
pattern is then added to either the static or dynamic query depending on the result from
its temporary query, while maintaining the hierarchical location of the pattern inside
the query. This means that if for example triple pattern P is part of a graph G and P
is dynamic, that P should also be placed under graph G inside the dynamic query. All
patterns that are added to the dynamic query are added in their time annotated form.

Once the triple patterns have been split up into static and dynamic queries, only one
more step is required to result in a real static and dynamic query. The graphs of the
static and dynamic parts can either be connected or disconnected. In case they are
disconnected, the two parts are in fact two separate queries executed as one, so no
merging of the end results of the queries is required. In case the graphs are connected,
the end results of the static and dynamic queries have to be merged. This merging can
only be done if we know the variables that connect these two graphs. It is possible (and
common) for a SPARQL query to use variables inside the WHERE clause that are not
present in the SELECT clause. Since we want to join these static and dynamic results
later on, we must know the values of these variables. This can be solved by making sure
that all variables from the WHERE clause are guaranteed to be present inside the SELECT
clause. To prevent the client from ever seeing these additional variables, the end results
go through a variable filter that will only let through the variables that were originally
requested by the client.

The example query from Listing 8.1 will after splitting look like the static and dynamic
query respectively found in Listings 8.3 and 8.4.

After the splitting process, the static query is forwarded for later usage to thematerial-
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izer, which is further explained in Subsection 8.2.4. The dynamic query is forwarded to
the streamer module which is then immediately triggered to produce a first streaming
result, this is explained hereafter.

8.2.2 Streamer

The streamer module is the starting point of the circular calls of the system. It can be
called by either the rewriter, which initiates the query result stream, or by the time
filter, which is called when the results from this module come in.

The only thing this module actually does is storing the dynamic query it received from
the rewriter, and executing that query against the TPF client. The results from that
query will be received by the time filter.

8.2.3 Time Filter

This module will filter all results from the dynamic query that was triggered by the
streamer. This filtering is based on the time annotations of the query results. The
query results were part of a dynamic query, so this implies that all possible results are
time-annotated.

Filtering will occur based on the current time and the time annotation per result. In
case we have a time interval annotation for a certain result, a check will be done whether
the current time lies within this interval, and only then will the result be allowed to
pass through the filter. In case we have a simple expiration time for each result, only
those results that are not yet expired will be passed through the filter.

All dynamic query results that successfully went though the filter will be forwarded to
the materializer.

Based on all the filtrates, a minimum expiration time will be determined. If the annota-
tion type is a time interval, the minimum of all interval expirations is taken. Otherwise,
if annotation is done with expiration times, the minimum of these times is taken. We
then schedule a new call to the streamer module at that newly determined minimum
time. This will make sure that all dynamic results will be kept up to date.

In future work, some optimizations might be possible in regards to the minimum expi-
ration time determination. The granularity of change might di↵er significantly between
di↵erent dynamic triple patterns, so these could be split up into separate queries similar
to the process of splitting up static and dynamic queries.
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PREFIX t: <http :// example.org/train#>

SELECT ?departureTime ?headSign
WHERE {

t:train4815 t:departureTime ?departureTime .
t:train4815 t:headSign ?headSign .

}

Listing 8.5: A materialized static SPARQL query based on the query in Listing 8.3
using the value <http://example.org/train#train4815> for the ?id variable.

8.2.4 Materializer

The materializer module is responsible for merging dynamic query results with the
static query. This static query was received from the rewriter module in the pre-
processing phase, this query will never be changed. But each time this materializer is
called, a copy of that query is used to modify and forward.

For all variables per dynamic query result, we will look for these variables inside the
static query. For each matched variable, we will replace that variable with the materi-
alized value for that variable that is present in the dynamic query result. Note that we
might have multiple results from the dynamic query, so this materialization step will
produce multiple materialized static queries in that case. Simply put, this step will fill
in the dynamic query results into the static query.

Once the materialization step is done, the newly created queries will be forwarded to
the result manager together with the dynamic query results.

For example, assume we have found exactly one result from the dynamic query found in
Listing 8.4, the result being: { "?id": "<http://example.org/train#train4815>",
"?delay": "\"P10S\"^^xsd:duration" }. If we fill in this one result into the static

query from Listing 8.3, this resulting materialized static query will look like the one in
Listing 8.5.

8.2.5 Result Manager

This is the last step in the streaming loop for returning the results of one time instance.
This module is responsible for either getting results for given queries from its cache,
or fetching the results from the TPF client.

First, an identifier will be determined for each materialized static query. This identifier
will serve as a key to cache static data. A requirement for this identifier is that is
should correctly and uniquely identify static results based on dynamic results. This is
equivalent to saying that this identifier should be the connection between the static and
dynamic graphs.
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PREFIX t: <http :// example.org/train#>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?id ?departureTime
WHERE {

?id t:departureTime ?departureTime .
}

Listing 8.6: Static part of a query for retrieving the departure time of all trains.

PREFIX tmp: <http :// example.org/temporal#>
PREFIX sp: <http :// example.org/singletonproperties#>
PREFIX t: <http :// example.org/train#>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?id ?delay ?final
WHERE {

GRAPH ?stmtExpiration {
?id t:delay ?delay .

}
?stmtExpiration tmp:expiration ?final .

}

Listing 8.7: Dynamic part of a query for retrieving the delay of all trains.

To determine this connection, the intersection of all2 static and dynamic variables needs
to be taken. We can materialize this connection by filling in the variables with the
dynamic query results. Because the intersection of static and dynamic variables was
taken, and we already have the dynamic results, all variables are guaranteed to be filled
in.

This graph connection can easily be converted into a cache identifier by concatenating
all pairs of variable-name, variable-result.

In case of a query that calculates the departure time and delay of all trains that is split
into a static and dynamic part which can be seen in respectively Listings 8.6 and 8.7,
the first step would be to determine all possible variables for the static and dynamic
query. In this case it is clear that the SELECT clause of the static query already contains
all variables from the body, being ?id and ?departureTime. The dynamic part however
has the variables ?id, ?delay ?final and ?stmtExpiration. Note that the variable
?stmtExpiration does not appear in the SELECT clause of the dynamic query, so this
variable has to be added to this clause for ensuring the correct workings of the algorithm.
When variables are added to the SELECT clause, they will not be delivered to the user
as a result from the original query. The intersection of these two lists of variables is
{?id}. Since ?id is guaranteed to be a result of the dynamic query, this variable can
be used as the link between the two query graphs and can thus be used as an identifier
for the caching mechanism. If a value "train:4815" for ?id was found, the identifier
could look like: "?id=train:4815".

2
Not only the variables occurring in the SELECT clause, but all variables that occur in the WHERE

clause. This is because SPARQL allows you to use variables inside the WHERE clause to connect triples

without them needing to be part of the SELECT clause.
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Now that we have an identifier for each materialized static query, a cache lookup can be
done to check if query results are already present. If they are available, those results are
merged with the dynamic results and only the variables that were part of the original
query’s SELECT clause will be sent back to the client. Otherwise, if the cache did not
contain such a key, that materialized static query will be executed against the TPF
client and all results will be cached with the identifier as key. Those results are then
also sent back to the client in the same manner as in the case where the cache already
had the results.

8.3 Rewriter Edge Cases

8.3.1 DISTINCT Query Splitting

Since this solution does not return any of the time annotations used internally, it is pos-
sible in some special cases that duplicate results appear. When the streaming encounters
a large amount of network delay, it could be possible that a long query execution time
results in multiple timely results of the same fact. This can occur when a certain dy-
namic result is received that is valid at that given time, but because of the slow query
execution another consecutive value of that fact could become active in the dataset.
Since TPF executes queries by retrieving partial results of the dataset, this could result
in this newly added fact being retrieved after its predecessor, while still being active at
the time of arrival at the client.

The SPARQL protocol has the DISTINCTmodifier which is used to declare that duplicate
query solutions have to be eliminated. So when this modifier is active in the original
query, the streamer has to select one of these versions and return them to the user.

A first possible solution to this problem could be to bu↵er all results in the streaming
module, and only returning the latest version to the client. The disadvantage of this is
the delay in results, because even though some results might already be waiting in the
streamer, the user still has to wait to see them.

An alternative solution is by not returning the latest version, but the first version of
the fact. This solves the problem of delay in results, because no bu↵ering is required
anymore, but this is at the cost of not having the very latest version of data.

8.3.2 Query Splitting with UNIONS

It is not always possible to perfectly split up patterns from UNIONS to one static and
one dynamic query. For example, the query in Listing 8.8, can not be split up in just
one static and dynamic query assuming triples with the t:delay predicate are the only
ones who are dynamic. This is because the union makes it impossible to have disjunct
static and dynamic queries, so additional queries would be required. A naive solution
to this problem is that the complete UNION can be assumed to be dynamic, this way
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PREFIX t: <http :// example.org/train#>

SELECT ?departureTime
WHERE {

{
_:id t:delay "P10S "^^ xsd:duration .

} UNION {
_:id t:headSign "Gent -Sint -Pieters "^^ xsd:string .

} UNION {
_:id t:headSign "Brugge "^^ xsd:string .

}
_:id t:departureTime ?departureTime .

}

Listing 8.8: SPARQL query for finding the departure times of all trains either having
a delay of ten seconds or departing from Gent-Sint-Pieters or Brugge.

the results are guaranteed to be correct, at the cost of possibly some data transfer
overhead caused by static triple patterns not being cached. There are however some
optimizations possible for this problem when for example we only have a UNION of two
graphs, but this is currently not the main goal of this research and must be looked into
in a future research.

8.3.3 Query Splitting with Implicit Graphs

As was explained in Subsection 7.2.4, implicit graphs are identified by triples. The
rewriter module loops over every triple pattern to check if they are dynamic. When
using implicit graph annotation, this means that the rewriter has to check if that triple
pattern has a time annotation in its context. Because these are triple patterns with
variables or blank nodes, multiple triples could be matched with them, so the rewriter
has to check the context of all possible triple pattern bindings to find at least one
triple that has a time annotation in its context, and in that case the triple pattern is
considered dynamic.

This of course introduces some major computational and data transfer overhead. As
future work, it might be possible to build implicit graphs for triple patterns as well,
so that the server determines all possible triple patterns of a dynamic triple and adds
some signaling triple to all of them saying that this pattern is dynamic.

8.3.4 Dependent Pattern Extraction

Some queries will require certain static triple patterns to also be considered dynamic
to ensure the correct working of the materializer module. We will refer to these special
static triple patterns as dependent triple patterns because they directly depend on
certain dynamic patterns. When we for example have the query in Listing 8.9 with the
first pattern being a dynamic one, and the second being static. This would normally
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PREFIX t: <http :// example.org/train#>

SELECT ?id ?delay
WHERE {

?id t:delay ?delay .
?id t:headSign "Gent -Sint -Pieters" .

}

Listing 8.9: SPARQL query with a static and dynamic triple pattern where the static
pattern needs to be considered dynamic.

result in two queries, one for the dynamic pattern and one for the static pattern. This
dynamic query would then be executed and several results for the variables ?id and ?
delay might be found. According to the algorithm, these results are then used to build
materialized static queries, and this is where the algorithm gets in trouble. As you
might have noticed, the ?id variable will be in the intersection of the variables used for
both the static and dynamic query, which will be called the intersected variables from
now on. This means that this variable simply has to be filled into the static query for
materialization. But when this is done, there are no more variables in the static query,
making a query request impossible.

A solution to this problem could be to add an additional step right after the query
splitting step that is responsible for looping through all triple patterns in the static
query and moving them to the dynamic query if the di↵erence of their variables with
the intersected variables results in an empty set. These extracted triple patterns are
the dependent triple patterns.
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Chapter 9

Use Case

This chapter will first discuss several derived data models of the use case regarding
SPARQL queries on train departure information based on the basic data model intro-
duced in Chapter 3. The use case from that chapter will be used to perform measure-
ments on the implementation of our solution and to compare it with alternatives like
C-SPARQL [55] and CQELS [10].

An implementation of the architecture explained in Chapter 8 is created in JavaScript
using Node.js [64], just like the original Triple Pattern Fragments client on which this
solution is based. This implementation has support for all temporal domains and types
of time annotation explained in Chapter 7.

The query from Listing 9.1 is used to retrieve information on all departures stored in
the Triple Pattern Fragments server defined in the basic data model as was shown in
Figure 3.1. This query will be referred to as the basic query, as it will be altered inside
the rewriter depending on the annotation type and temporal domain. Our implemen-
tation will then provide a stream of query results to the user, updating each time new
results become available or existing results are changed.

PREFIX t: <http :// example.org/train#>

SELECT DISTINCT ?delay ?headSign ?routeLabel ?platform
?departureTime

WHERE {
_:id t:delay ?delay .
_:id t:headSign ?headSign .
_:id t:routeLabel ?routeLabel .
_:id t:platform ?platform .
_:id t:departureTime ?departureTime .

}

Listing 9.1: The basic SPARQL query for retrieving all train departure information.
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Figure 9.1: Reification data model for representing train departures in one train station
using time intervals.

9.1 Derived Data Models

This section will show the di↵erent possible data models derived from the basic data
model for each type of time annotation, for both the time interval and expiration time
domain.

The nodes Interval Initial and Interval Final respectively refer to the start and
end time of the time interval annotation, both with data type xsd:dateTime. While
the node Expiration refers to the expiration time annotation, with data type xsd:
dateTime.

The time interval-based annotation for the four annotation types (as discussed in Chap-
ter 7) can be found in Figures 9.1, 9.2, 9.3 and 9.4.

There aren’t any real dynamic triples anymore in these data models as was the case
with the basic data model. The dynamic triples received time annotations and have
become static in their context.

The expiration time-based data models are completely analogous, with the di↵erence
that the nodes Interval Initial and Interval Final would be merged to one node
Expiration and the joined edge would be named tmp:expiration.
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Figure 9.2: Singleton properties data model for representing train departures in one
train station using time intervals. The nodes in light grey are predicates.

9.2 Measurements

9.2.1 Annotation Types

Our use case will be executed for all eight possible annotation combinations in our
implementation. As mentioned before, the timeliness of the server data is ten seconds.
Each test will be executed for a duration of one minute on the same dataset that was
recorded from the iRail API. Each possible test will be run ten times and the final
results will be taken as the average of these.

A naive implementation was created using the basic query from Listing 9.1. This naive
test is run on the default TPF client by continuously polling with this basic query at
several di↵erent frequencies.

9.2.2 Server and Client Performance

We will also compare the performance of our solution in terms of processor e�ciency
with C-SPARQL and CQELS. The reason for these two is that they respectively do black
box and white box query processing, which will most likely produce di↵erent results.
The setup for each of these tests will consist of one server which has an endpoint that
is either TPF, C-SPARQL or CQELS, depending on which test is being executed. This
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Figure 9.3: Graphs data model for representing train departures in one train station
using time intervals. The surrounded facts indicate graphs which can be refered to as a
node. For clarity, the edges leaving from graphs are indicated in their greyscale color.

server can be reached by ten di↵erent clients which each have a increasing amount
of concurrent query executions. These clients can query using our query streamer
implementation, C-SPARQL or CQELS, depending on which test is currently being
executed. Initially, each client will execute just one query which will stream for the
duration of one minute. These ten clients will be synchronized so that they start each
query execution at the exact same moment. After that stream, each client will initiate
two simultaneous query streams. This will be repeated until each client has executed
20 simultaneous streams. From the point of view of the server this results in a series
of 10 to 200 concurrent query streams, incremented by 10 each minute. An overview of
this setup can be found in Figure 9.5.

A dynamic query generator will make sure that each client query execution has a
di↵erent query, these generated queries are equivalent for the di↵erent streaming ap-
proaches. This dynamic query generator will derive queries from the basic query in
Listing 9.1 when testing our implementation. For C-SPARQL and CQELS, equivalent
basic queries have been created which can respectively be found in Listing 9.2 and List-
ing 9.3. Note that for C-SPARQL the stream http://example.org/stream contains
the dynamic data for both the delay and platform, while for CQELS these respectively
exist within the streams http://example.org/streamdelay and http://example.org
/streamplatform. For C-SPARQL, the graph http://example.org/static contains
our static data while for CQELS this data exists within the default graph.

9.2.3 Setup Details

All of these tests ran on the Virtual Wall (generation 2) [65] environment from iMinds.
This allowed us to easily define the required machines with their specifications. Most
notably the scalability test setup from Figure 9.5 was very convenient to setup in this
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REGISTER QUERY TrainDepartures AS
PREFIX t: <http :// example.org/train#>
SELECT ?delay ?headSign ?routeLabel ?platform ?departureTime
FROM STREAM <http :// example.org/stream > [RANGE 1h STEP 10s]
FROM <http :// example.org/static >
WHERE {

_:id t:delay ?delay .
_:id t:headSign ?headSign .
_:id t:routeLabel ?routeLabel .
_:id t:platform ?platform .
_:id t:departureTime ?departureTime .

}

Listing 9.2: The C-SPARQL query for retrieving all train departure information. This
is equivalent to the basic query in Listing 9.1.

PREFIX t: <http :// example.org/train#>
SELECT ?delay ?headSign ?routeLabel ?platform ?departureTime
WHERE {

STREAM <http :// example.org/streamdelay > [RANGE 60m SLIDE 10s] {
?id t:delay ?delay

}
STREAM <http :// example.org/streamplatform > [RANGE 60m SLIDE 10s] {

?id t:platform ?platform
}
?id t:headSign ?headSign .
?id t:routeLabel ?routeLabel .
?id t:departureTime ?departureTime .

}

Listing 9.3: The CQELS query for retrieving all train departure information. This is
equivalent to the basic query in Listing 9.1.



74 CHAPTER 9. USE CASE

t:delay
t:platform

t:headSign t:routeLabel

t:departureTime

tmp:initial
tmp:final

tmp:initial
tmp:final

Departure

Delay Platform

Headsign Route Label

Departuretime

Interval Initial

Interval Final

Interval Initial

Interval Final

Figure 9.4: Implicit graphs data model for representing train departures in one train
station using time intervals. The surrounded facts indicate implicit graphs which can
be refered to as a node. For clarity, the edges leaving from graphs are indicated in their
greyscale color.

environment. Each machine used had a two Hexacore Intel E5645 (2.4GHz) CPU’s with
24GB RAM and was running Ubuntu 12.04 LTS. Our scalability tests used the CQELS
engine version 1.0.1 [66] and the C-SPARQL engine version 0.9 [67].

In each of our tests, the TPF endpoint had access to around 300 static triples at the start
of the experiment, with around 200 dynamic triples that were created and removed each
ten seconds. To approximate real-world conditions, each test used a deterministically
defined delay for each HTTP request. This delay is randomly chosen from a Poisson
distribution with a fixed seed resulting in delays around 100 milliseconds. The reason
for using the same seed for each test is to make sure that for example the nth HTTP
request using reification has the exact same delay as the nth request using graphs.

Server
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Client7
1..20

Client8
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Figure 9.5: Setup for the server and client performance tests. Each client will execute 1
to 20 simultaneous queries each sixty seconds. This setup exists for our implementation,
C-SPARQL and CQELS.



Chapter 10

Results

Several tests on our implementation were executed for the use case explained in Chap-
ter 8. First, we will compare the di↵erent dynamic data representation types of our
implementation. After that, our implementation will be compared with a naive imple-
mentation. Finally, a performance comparison in terms of processor e�ciency will be
made with alternative streaming SPARQL approaches like C-SPARQL and CQELS.

10.1 Dynamic Data Representation Types

This section will compare the performance of each possible dynamic data representation
type using the test results from Figure 10.1. Each subfigure contains subsequent requests
inside one streaming query execution for the four types of time annotation types. The
first row of subfigures shows the annotations using time intervals, while the second row
shows the expiration times. The first column of subfigures has caching disabled and
the second column has caching enabled. The following subsections will discuss several
aspects of these figures.

10.1.1 Temporal Domains for Timeliness

The di↵erence between time interval annotation and annotation using expiration times,
respectively the first and second row of subfigures in Figure 10.1, now becomes very ap-
parent. In Subsection 7.1.2 we discussed the main di↵erences between these two types
of temporal domains. It was also mentioned that time interval annotation causes grow-
ing datasets when expired fact versions are not removed, which results in continuously
slower query execution times. This becomes very clear in Figure 10.1, the time interval
annotation execution times continuously increase, while the expiration execution times
stay more or less constant.
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When we compare the di↵erence in data transfer between the time interval and expira-
tion time approaches in Figure 10.2, we can indeed confirm that the increasing query
times are in fact caused by the larger data set, which is the cause of this increased data
transfer.

Annotation using time intervals can still be useful. In some scenarios one could need
multiple versions of the same fact where the single latest version is not su�cient, what
can only be achieved using time intervals. In that case it is very important to implement
an aggregation or archival process for old versions of these facts. The rate at which these
processes should occur are determined by the timeliness of these facts. For example in
this use case it could be useful to only keep the three latest versions of each fact, what
would result in a constant amortized execution time.

10.1.2 Methods for Time Annotation

This section will discuss the four di↵erent annotation methods, these are the four plots
inside each subfigure of Figure 10.1. It is clear that the reification approach has in all
cases the worst performance. This is a direct result from the large amount of triples this
approach requires for each fact, which leads to higher execution times. The three other
approaches have execution times which are significantly lower than those of reification,
but there still is a clear distinction.

Figure 10.3 contains the same data as Figures 10.1c and 10.1d, but at a lower scale
to more clearly see the di↵erence between the performance of the three remaining ap-
proaches. Figures 10.1 and 10.3 show that there is a clear order in the performance
of the four methods of annotation. The graph approach has the overall lowest execu-
tion times, closely followed by first the singleton properties approach and then implicit
graphs, finally the reification approach has the highest overall execution times.

This order of performance closely resembles the triple-count functions from Table 7.1,
which indicates that the largest part of the execution times is determined by the amount
of triples that is required by the annotation type, which is in line with our explanation
of the slower execution times with time interval annotation. This is also confirmed
when looking at the data transfer plots for the four annotation methods in Figure 10.4.

When we look at the triple-count functions from Table 7.1, we see that both graph
approaches require the same amount of triples, but this does not result in the same
performance. These increased execution times of the implicit graph approach can be
explained by the extra step of indirection that is required to determine the (implicit)
graph of its dynamic triples. This extra step of indirection always requires the execution
of an extra query, as explained in Subsection 7.2.4.
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10.1.3 Cache Influence

Chapter 8 explained the architecture of our solution in which a caching mechanism was
available, which is responsible for remembering results from the static queries. We also
explained that this caching mechanism could be disabled, and this subsection explains
what the influence of this caching is on the performance of the execution.

The first columns of Figures 10.1 and 10.3 show execution times without caching, while
the second columns show the same with caching enabled. In (almost) all cases, this
cache has a very positive e↵ect on the execution times: the average execution time is
almost halved. And it can be seen that when caching is enabled that the first execution
time per stream is higher than the following ones. With time intervals this e↵ect is not
clear anymore because of the increasing execution times. This means that our cache
does what it’s supposed to do, it accumulates more data the first execution time which
can be reused later on.

Only in the case of reification, this cache seems to have a bad e↵ect on the performance,
which causes the incompleteness of test results for this case. To understand what
can cause this behavior, we have to look back at how this caching mechanism works.
Subsection 8.2.5 explained that the result manager module handles caching by saving
results of the static query. Assume we are using time intervals in our use case, for
reification this would result in the query from Listing 10.1 when caching is disabled
while Listings 10.2 and 10.3 respectively contain the static and dynamic query when
caching is enabled. The execution plan for SPARQL queries by the TPF client always
makes sure the most informative triple patterns in the given query are queried before the
less informative ones. When we are not using the caching mechanism, the query from
Listing 10.1 will result in one of the last three triple patterns to be considered as the
most informative one, because the other patterns will have exactly double the amount
of results than these three when using the data model from Figure 9.1. When caching is
now enabled, the dynamic query from Listing 10.3 must be separately executed before
the static query from Listing 10.2, but our previously most informative triple patterns
now can’t be selected anymore, since they are part of the static query that will be
executed later on. This results in at least double the execution time, which in our case
causes the execution to be too long to fully fit into our test case.

When we have another look at out basic use case query in Listing 9.1, we see that
there are two dynamic triples and three static triples. In theoretically optimal caching
scenarios, this could lead to an execution reduction of 60%. In our test results, the
caching leads to an average reduction of 56%1, which is slightly lower than the optimal
case. The main reason for this lower reduction is the fact that the dynamic query
simply consumes a relatively larger portion of the execution time. This is because of
the overhead that is introduced when using annotations.

The plots in Figure 10.5 show us a very interesting e↵ect of the cache on the data
transfer. The cache reduces the amount of data transfer as expected, but it also increases
the overall throughput what results in an even faster query execution in the stream.

1
This average was taken without the results from reification, since these distorted the average too

much.
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PREFIX tmp: <http :// example.org/temporal#>
PREFIX sp: <http :// example.org/singletonproperties#>
PREFIX t: <http :// example.org/train#>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?id0 ?platform ?initial0 ?final0 ?delay ?initial1 ?final1 ?
departureTime
?headSign ?routeLabel

WHERE {
_:stmt5 rdf:subject ?id0 .
_:stmt5 rdf:predicate t:platform .
_:stmt5 rdf:object ?platform .
_:stmt5 tmp:intervalInitial ?initial0 .
_:stmt5 tmp:intervalFinal ?final0 .
_:stmt6 rdf:subject ?id0 .
_:stmt6 rdf:predicate t:delay .
_:stmt6 rdf:object ?delay .
_:stmt6 tmp:intervalInitial ?initial1 .
_:stmt6 tmp:intervalFinal ?final1 .
?id0 t:departureTime ?departureTime .
?id0 t:headSign ?headSign .
?id0 t:routeLabel ?routeLabel .

}

Listing 10.1: Time-annotated SPARQL query for our use case using the reification
approach with time intervals without caching.

PREFIX t: <http :// example.org/train#>
PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?id0 ?headSign ?routeLabel ?departureTime
WHERE {

?id0 t:headSign ?headSign .
?id0 t:routeLabel ?routeLabel .
?id0 t:departureTime ?departureTime .

}

Listing 10.2: Static time-annotated SPARQL query for our use case using the reification
approach with time intervals with caching.
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PREFIX tmp: <http :// example.org/temporal#>
PREFIX sp: <http :// example.org/singletonproperties#>
PREFIX t: <http :// example.org/train#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>

SELECT ?id0 ?delay ?initial0 ?final0 ?platform ?initial1 ?final1
WHERE {

_:stmt5 rdf:subject ?id0 .
_:stmt5 rdf:predicate t:delay .
_:stmt5 rdf:object ?delay .
_:stmt5 tmp:intervalInitial ?initial0 .
_:stmt5 tmp:intervalFinal ?final0 .
_:stmt6 rdf:subject ?id0 .
_:stmt6 rdf:predicate t:platform .
_:stmt6 rdf:object ?platform .
_:stmt6 tmp:intervalInitial ?initial1 .
_:stmt6 tmp:intervalFinal ?final1 .

}

Listing 10.3: Dynamic time-annotated SPARQL query for our use case using the
reification approach with time intervals with caching.

This increased throughput with caching is caused by the dynamic query being able to
more specifically look for results, while without caching the non-split query would be
larger and requires more processing client-side.

10.1.4 Rewriting Phase

The rewriter module has a non-negligible execution time as can be seen when compar-
ing Figures 10.6 and 10.1, but this is still significantly lower than the average query
execution time in a query stream.

The most apparent conclusion from this figure is that the rewriting step using implicit
graphs is significantly slower than the other three approaches. This immediately follows
from the issue with implicit graphs that was explained in Subsection 8.3.3. We are using
triple patterns, but we already have to determine the implicit graph if we want to detect
whether it is a static or dynamic triple pattern. So all possible triples for the triple
patterns have to be queried, which results in this higher execution time.

The three other annotation methods have an equivalent performance compared to their
regular query execution. Interval-based annotation here has an overall higher execution
time, this is because of the fact that one more triple is required to store a fact ver-
sion when compared to expiration times. Caching has no significant influence on the
rewriting phase in terms of execution time.

The rewriting phase execution time takes about 15% of the average reification execution
time, 31% for the singleton properties and explicit graph approaches, and 155% for the
implicit graph approach. Even though this contribution is very high in case of implicit
graphs, it should be kept in mind that this rewriting phase only occurs once at the start
of the stream, so for a long running query the execution time of this phase becomes less
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important.

10.2 Naive Performance

Figure 10.7 shows the execution times of the naive implementation for di↵erent query
frequencies compared to the optimal case of our solution.

In the optimal case where the naive solution has a frequency of ten seconds, we see that
it performs about seven times better than our solution. This is because of the extra
complexity that is introduced because we are working with extra time annotations inside
our data and its processing. Our solution will perform better in scenarios where a larger
part of the data is static and can be cached.

It can also be noted that changing the frequency to more than ten seconds will have no
significant influence on naive performance anymore.

The reason why our solution performs better when compared to a naive solution with
a high frequency, is that this naive solution has to re-execute the full query each time.
Our solution can reuse static information about the query that was acquired during
previous requests.

In many realistic scenarios, the timeliness of the dynamic data is unknown to the client.
A naive implementation would then require an update frequency that is possibly much
higher than the actual data timeliness since it has no way of knowing when the data
is actually going to change. Figure 10.7 shows that our solution outperforms the naive
implementation once the naive frequency is around half a second. This means that in
this scenario when a naive polling frequency is used that is twenty times higher than
the dynamic data timeliness, it is more e�cient to use our solution with graph-based
annotation using expiration times with caching enabled. Keep in mind that such a high
naive polling frequency would result in a very high server load, this is further explained
in the next section. As already noted before, when more static data related to the query
can be cached, the more e�cient this solution becomes.

10.3 Server and Client Performance

Figure 10.8 shows the comparison of the average server CPU usage for an increasing
amount of concurrent clients for C-SPARQL, CQELS and the query streamer imple-
mentation as presented in this work. From this plot it can be concluded that our
solution is many orders of magnitude less computationally intensive for this use case
than C-SPARQL and CQELS, this allows for more simultaneous requests to be han-
dled by our endpoint. The graph of our implementation seems to stay constant when
compared to the slope of the graphs of C-SPARQL and CQELS. This increase in server
scalability comes however at the cost of an increased amount of bandwidth usage and
a computational increase on each client which can be seen in Figure 10.9. Our solution
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provides a higher computational scalability at the cost of a lower bandwidth scalability.
Note that this increase in bandwidth is already partially solved by the caching of static
results, but could be further improved with the use of HTTP caches.

Even though a test like this with 1000 to 10000 simultaneous clients would be more con-
clusive, these results already give a very clear comparison between two major SPARQL
streaming approaches and the implementation presented in this work.

Figure 10.9 and Figure 10.10 respectively show the overall average client CPU usage
for the duration of one query stream and the average client CPU usage for a di↵erent
number of concurrent clients on the same machine. Our solution requires more resources
on the client side, this is because of the fundamental idea of TPF that the query
calculations should be limited at the endpoint because of which the client must do
more work, while C-SPARQL and CQELS require the clients to simply wait for results.
Figure 10.9 also shows an initial spike in CPU usage when the query is initialized. This
can be explained by the rewriting phase which is executed only once at the start of the
query stream together with the initialization of all other required components of this
solution. Figure 10.10 shows that it should be avoided to have too many concurrent
query streams on the same client.

The plot in Figure 10.8 still doesn’t show the complete picture, since each line is an
average of many CPU measurements during the test execution which ran for one minute.
In order to reveal more detail, Figure 10.11 shows a boxplot of the CPU usage for 200
concurrent clients. There are sixty data points per boxplot with each one indicating the
average CPU usage during one second. The location of the whiskers of the boxplot for
C-SPARQL show that this approach has very large CPU spikes, which is also confirmed
by the many outliers. While our approach has a very low overall CPU usage across
all data points. This story is the same for CQELS, but here the average CPU is
significantly higher which is explained by the relatively lower performance of CQELS
when the dataset size remains relatively small. This unpredictable high load is also
true for regular SPARQL endpoints, which has such a problematic influence on their
availability. Our approach solves this unpredictability which makes this a su�cient
solution to the problem statement of this work.

Figures 10.8 and Figure 10.9 also show that the cost of calculating query results is
moved from the server to client, which is one of the main goals of TPF. Because of
this, the client has to pay the largest part of the cost of calculating query results which
directly leads to less server load. This again leads to a higher server availability as was
one of the main goals of this research.

Note that these server CPU usage results are not the same as from the original Triple
Pattern Fragments measurements [19], there the processor usage reaches more than
20% for 100 clients, while in this case this percentage is between zero and one percent.
This is because the original tests execute queries at a high frequency per client, while
the clients in our tests are limited to streaming queries with a frequency of ten seconds
as defined by the server. The absolute CPU percentages are not the important result,
but the relations between these di↵erent types and the relative slope for an increasing
amount of clients are.
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(a) Time intervals without caching. (b) Time intervals with caching.

(c) Expiration times without caching. (d) Expiration times with caching.

Figure 10.1: Executions times for all di↵erent types of dynamic data representation for
several subsequent streaming requests. The figures show a mostly simultaneous increase
when using time intervals and constant execution times for annotation using expiration
times.
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(a) The data transfer in bytes using time intervals having a total transfer
of 18.28 MB over 4944 requests in this time range.

(b) The data transfer in bytes using expiration times having a total trans-
fer of 4.18 MB over 1115 requests in this time range.

Figure 10.2: The data transfer in bytes for a duration of 100 seconds. These plots used
the graph approach with caching disabled. The figures indicate that the time intervals
method uses much more bandwidth for the same required information.
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(a) Expiration times without caching. (b) Expiration times with caching.

Figure 10.3: Executions times for all di↵erent types of time annotation methods using
expiration times for several subsequent streaming requests. These figures contain the
same data as Figures 10.1c and 10.1d, but without the rapidly increasing reification
results in order to reveal the other methods in more detail. They indicate the graph
approach having the lowest execution times.
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(a) The data transfer in bytes using reifica-

tion having a total transfer of 36.46 MB over
7924 requests in this time range.

(b) The data transfer in bytes using singleton

properties having a total transfer of 2.57 MB
over 627 requests in this time range.

(c) The data transfer in bytes using explicit

graphs having a total transfer of 2.10 MB over
557 requests in this time range.

(d) The data transfer in bytes using implicit

graphs having a total transfer of 6.70 MB over
1191 requests in this time range.

Figure 10.4: The data transfer in bytes for the four annotation methods for a duration
of 50 seconds. These plots used expiration times with caching disabled. Reification uses
by far the most bandwidth, while the graph approach uses the least.
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(a) The data transfer in bytes without caching having a total transfer of
2.09 MB over 557 requests in this time range.

(b) The data transfer in bytes with caching having a total transfer of
1.75MB over 351 requests in this time range.

Figure 10.5: The data transfer in bytes for a duration of 50 seconds. These plots used
the graph approach with expiration times. With caching enabled, the throughput of
data is higher while transferring less data in total.
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Figure 10.6: Histogram of the preprocessing execution times for the di↵erent options
for annotation, grouped by annotation method. The graph approach has the lowest
preprocessing execution times. Expiration times are slightly faster and caching has no
significant influence.

Figure 10.7: Performance of naive implementation compared to the graph approach
with expiration times and caching, for di↵erent query frequencies in this naive imple-
mentation. When the naive frequency is below half a second the graph annotation
approach becomes faster.
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Figure 10.8: Average server CPU usage for an increasing amount of clients for C-
SPARQL, CQELS and the solution presented in this work. The CPU usage of this
solution proves to be influenced less by the number of clients. Note that the test
machine had 4 assigned cores.

Figure 10.9: Average client CPU usage for one query stream for C-SPARQL, CQELS
and the solution presented in this work. Initially the CPU usage for our implementation
is very high after which is converges to about 5%. The usage for C-SPARQL and CQELS
is almost non-existing.
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Figure 10.10: Combined client CPU usage for an increasing amount of clients for C-
SPARQL, CQELS and the solution presented in this work. This shows that our solution
does not perform very well at client side when di↵erent query streams are executed
simultaneously. The CPU usage increases linearly as expected.

Figure 10.11: Average server CPU usage for 200 concurrent clients for C-SPARQL,
CQELS and our solution. C-SPARQL and CQELS have a much higher overall CPU
usage.
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Chapter 11

Conclusion

In this thesis, we have researched and compared di↵erent approaches to continuously
updating SPARQL queries for retrieving static and dynamic information, and staying
up-to-date with this changing data. We investigated a solution for this using Triple
Pattern Fragments and other Linked Data concepts to achieve more e�cient, polling-
based querying.

To pass on the volatility knowledge about facts to clients, we have researched di↵erent
methods of time annotation for dynamic triples. These methods consist of reification,
singleton properties, graphs and implicit graphs based on the properties of TPF. Each
of these methods can be used with the annotation of either time intervals or expiration
times.

The architecture that was developed is based on an extra layer on top of the TPF client.
It can internally transform a regular query to two continuously executable queries that
can be passed on to the regular TPF client. The first transformed query retrieves the
time annotations of dynamic triple patterns so that the client knows when a new query
needs to be executed to stay up-to-date with the data changes. The purpose of the sec-
ond transformed query is to retrieve static information. A caching mechanism was built
into this system to allow for this static information to be reused across di↵erent query
executions. The TPF server needed no significant changes, except that its dynamic
data must be time annotated.

An implementation of this architecture was created for all types of time annotations
so that they could be compared with each other. This implementation was tested on
performance for the di↵erent methods of time annotation in terms of processor us-
age and bandwidth. A naive approach to continuous querying was created using the
regular TPF client and was compared with our implementation for performance. Fi-
nally, an experiment was created to compare the client and server performance between
this implementation and two streaming-based SPARQL engines: C-SPARQL [7] and
CQELS [10].
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From our results, it was clear that graph-based annotation using expiration times is the
most e�cient way of handling dynamic data in the proposed framework, with implicit
graphs using the properties of TPF being a very promising future research topic. This is
because the implicit graphs approach allows clients who do not support time annotated
facts to still retrieve all available information, expect for the time information itself.
Our expectation that our approach would be more scalable in terms of server processor
usage than other streaming-based SPARQL engines was confirmed. This is because TPF
moves a large part of the query execution from the server to the client, which ensures
that whoever wants to execute a query is also the one that will pay for the largest part
of the execution cost. This is in essence a fundamental solution to increased availability.

When clients are very limited in terms of computational power, or when query endpoints
are restriced to a low number of clients, then traditional approaches like C-SPARQL
and CQELS are still more interesting than the solution presented in this work. This
approach is aimed at use cases where a large number of clients concurrently have to
query data without putting a too high load on the server.

Our results made it clear that polling-based continuously updating SPARQL querying
is a valid alternative to the traditional approaches. While significantly reducing the
required server computations per query, which leads to a higher endpoint availability.
This work is only a first step for achieving a complete solution for this, since there are
currently still some things that need to be tackled before this would be fully usable in
practice. There are for example some parts of the query rewriter module which could
be further improved to optimize the client querying e�ciency. But it is also important
that a generic method is devised for automatically annotating data with their volatility,
because in this work we assumed that this data was already annotated with the required
information. These will be further discussed in the next chapter.

Up until now, real-time data was either available with limited publicness for server
performance reasons, or was published in formats which are not automatically machine-
readable by the Semantic Web standards. Using the concept of Linked Data Fragments,
we were able take the next step to publicly available real-time Linked Data.



Chapter 12

Future Work

This chapter will explain some aspects of this research which could be improved in
future research. First, we will discuss some parts of the preprocessing step of our
approach which can be improved. After that, the main query execution process will be
handled. Finally some future opportunities for further evaluating this implementation
are discussed.

12.1 Preprocessing

12.1.1 Multiple Dynamic Queries

In Chapter 8 we have explained that the rewriter module is responsible for splitting
up the input query into a static and dynamic query. The dynamic query has time-
annotated triple patterns which means that this query must be re-executed after a
certain time. This time for re-execution is retrieved from either the expiration time or
the upper bound of the time interval.

It was also explained that when multiple triple patterns with di↵ering expiration times
or time intervals are present in the dynamic query, the earliest of update times was
taken to ensure that all results are up-to-date.

For the train-scheduling use case that was presented in Chapter 9, this approach works
fine because these dynamic triple patterns require the same update frequency. But
assume we have the query from Listing 12.1 which retrieves the time from a clock using
three di↵erent triple patterns, each with a di↵erent update frequency. It is clear that
each triple pattern will have a significantly di↵erent update frequency, for example the
results for ?minute will change 1 440 more frequently than those for ?day. In the current
solution, this complete dynamic query would be fully executed each minute, while it is
known that the update frequency for two of the triple patterns are much lower.
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PREFIX c: <http :// example.org/clock#>

SELECT DISTINCT ?minute ?hour ?day
WHERE {

c:clock c:minute ?minute .
c:clock c:hour ?hour .
c:clock c:day ?day .

}

Listing 12.1: SPARQL query for retrieving clock information with three dynamic triple
patterns.

Instead of making a strict distinction between static and dynamic queries, it could be
possible to have a set of queries which each have a di↵erent update frequency. The
traditional static query would then become a query with an infinitely long update
frequency. The dynamic query would be split up into di↵erent queries grouped by
triple pattern update frequency. The caching mechanism could be generalized to not
only be usable for fully static queries, but for queries with any update frequency.

This change would mean that the query from Listing 12.1 would result in three separate
queries which each have a di↵erent update frequency. The results for ?hour and ?day
would then be cached for their respective durations.

12.1.2 Query Splitting with UNION clauses

As was explained in Section 8.3.2, query splitting with multiple or nested UNION clauses
can become impossible to perfectly split up to a disjunct static and dynamic query.

It might be possible to solve this issue using mathematical set theory which can be
implemented using SPARQL algebra. This would require deeper interaction with the
TPF client instead of just an extra layer on top of it. This is because our extra layer
passes SPARQL queries to the TPF client and expects its results, but what we need is
a more fine-grained way of managing which Triple Pattern Fragments are fetched and
which are not. Virtual queries could be used to fetch mixed static and dynamic results
but are still smart enough to cache the static data. These virtual queries could act as
a proxy to the real triple pattern fragments retriever which is engrained into the TPF
query executor to make sure that static results are retrieved from the cache if possible.

12.1.3 Implicit Graphs

Section 10.1.4 showed us that the implicit graph approach has a very ine�cient rewriting
phase. This is because of the issue that was already explained in Section 8.3.3, the fact
that we have no easy way of knowing which triple patterns are dynamic without checking
all matching triples.

What we need is a better way of determining whether or not triple patterns are static or
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s p o .
_ p o .
s _ o .
_ _ o .
s p _ .
_ p _ .
s _ _ .
_ _ _ .

Listing 12.2: All possible triple patterns for the triple s p o.

dynamic, instead of just looking at the materialized triples and seeing if they have a time
annotation. One possible approach for this is to add additional metadata to the TPF
endpoint to indicate which triple patterns are dynamic. This however raises another
issue, the question of which triple patterns should be added as metadata, because for
each triple multiple corresponding triple patterns exist.

Listing 12.2 shows all 23 possibilities of triple patterns for a certain triple s p o. Future
research might find a solution to determine which triple patterns should and should not
be marked as dynamic. It is for example clear that the fully undetermined triple pattern
_ _ _ should only be marked as dynamic if all triples in the current dataset are dynamic.
While the fully determined triple pattern s p o only depends on a single concrete triple
to be marked as dynamic.

This extra metadata could significanly increase the dataset size, seeing as this dataset
would approximately be eight times larger in the worst case. This number would of
course be lower when some dynamic triples share a subject, predicate or object. It might
also be possible to not explicitly store this metadata inside the store, but by dynamically
resolving the triple pattern fragment URIs for these metadata and redirecting them to
the correct metadata.

A second problem with implicit graphs is the extra query step during the streaming
phase that was explained in Section 10.1.2 which explains the slightly higher execution
times for this approach compared to regular graphs. Solving this issue would most
likely require again a deeper interaction with the TPF client to avoid having multiple
separate query executions which do not optimally make use of the query planner of the
TPF client.

When these issues could be solved, implicit graphs would become a very interesting
alternative to explicit graphs. Mainly because this wouldn’t require graph support on
the client or server, seeing as the graph structures become possible by using Triple
Pattern Fragments.
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12.2 Querying

12.2.1 Determining Expiration Times and Time Intervals

Throughout this work, we have always assumed that the data provider has su�cient
knowledge to determine the expiration times and time intervals for dynamic facts. In
Section 7.1.3, we discussed the use of mathematical equations to represent the volatility
of data instead of the current methods. This would lead to the need of a generic ap-
proach for determining the change patterns of data, what could potentially be achieved
by doing some kind of pattern matching on the partial history of the data changes.

If such a volatility prediction of data could somehow be achieved, this could also be
used to determine each next expiration time and time interval for our dynamic facts.
But this prediction is very use case specific, so a generic solution might not always
be desired as it could introduce overhead when compared to more simple tailor-made
approaches.

12.2.2 Concurrent Client-Query Optimization

Section 10.3 showed that our implementation causes a lineair increase in processor usage
at the client when multiple di↵erent query streams are initiated. This is of course to
be expected since the cost of executing queries has been largely moved from the server
to the client.

In some cases, it might be possible to optimize these concurrent query executions at
the client side. When for example these di↵erent queries are linear at the same dataset,
parts of the execution could be reused. This would require all query executions to
have a common context in which these reusable parts are stored, and what would again
possibly require deeper interaction with the TPF client.

Local HTTP caches would be an easy first step to achieve this, as this would cause
common HTTP requests to the endpoint to be only executed once.

12.2.3 TPF FILTER Support for Time Intervals

A fundamental idea of Linked Data Fragments is to limit the interfaces of endpoints
to reduce the possibility of server overloading. TPF implements this by only allowing
lookups on triple pattern fragments.

In this work we have presented an approach to annotate dynamic triples with time
annotations. If we were using time intervals as annotation type, each fact could have
multiple time versions in the dataset. For checking which version is currently valid, the
client must retrieve each version of this fact, which leads to the problem of continuously
slower query execution as discussed in Section 7.1.3 and experimentally confirmed in
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Section 10.1.1.

We had already discussed the solution of ensuring an upper bound on how much fact
versions can exist at the same time. An alternative to this limitation could be to expand
the TPF endpoint interface to allow basic FILTER operations on the time annotations
itself. If it were possible for the client to simply search for “All departed trains be-
tween NOW - 10 minutes and NOW.” as is possible with SPARQL

Stream

[9], a lot of
bandwidth and processor time of the client could be saved. It would also have the
nice side-e↵ect of enabling historical searches, which opens up a whole new window of
possibilities. This however, moves part of the complexity again to the server. But if the
server was capable of somehow saving and looking up the results for these FILTER’s in
an e�cient manner, this could lead to an overall increase in e�ciency.

12.2.4 Changing Background Data

In a similar work [68] about stream processing, researchers have developed a method
for evaluating continuous queries over both static and dynamic data. They also take
into account that static background data from other data sources can still change, and
this change is reflected in local views on the server.

This is something that is not supported in the solution presented in our work. From the
moment a client commences a query streaming, it will cache any static data it comes
across. But this static data will remain the same for the whole remainder of this query
streaming instance.

This related work [68] could be a good starting point for solving this issue. But it will
not provide a complete solution, because we would need an additional mechanism to
make sure the client is aware of any static data changes. One very simple solution could
be to make all static data dynamic with a very low change frequency combined with
allowing multiple dynamic queries as discussed in Section 12.1.1.

12.3 Evaluation

12.3.1 Influence of Di↵erent Queries

The evaluation that was done in Chapter 10 was limited to the query of a single use
case, the one for retrieving information about train departures as could be seen in
Listing 9.1. This query had two triple patterns retrieving dynamic data and three
triples patterns for static data. In Section 10.1.3, we had already reasoned that when
more triple patterns were to be used over static data, our caching mechanism would
potentially lead to relatively lower bandwidth and executions times when compared to
the naive approach.

Therefore, it would be interesting to do a similar evaluation with di↵erent query types.
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Queries with much more dynamic data or triple patterns over dynamic data could be
used, as well as queries with more static data or patterns over static data.

Currently, our dynamic data had a change frequency of ten seconds, experiments with
varying frequencies might also produce interesting results about client and server per-
formance.

12.3.2 Number of Concurrent Clients for Measuring Perfor-
mance

For our experiments, we used the Virtual Wall [65] environment from iMinds which
had a limited amount of machines available for testing. This is the reason why we
only had physical 10 client machines plus 1 server in our performance tests. Even
though Figure 10.8 already showed significant di↵erences in server processor usage for
our implementation compared to C-SPARQL [7] and CQELS [10], it showed that the
processor usage for our implementation remained really low. It is not clear from this
what the limitations of this approach could be.

One way to improve these results is to simply have more available machines to use
as clients. Another way of improving this could be to increase the volatility of our
dynamic data, but at the same time making sure that this frequency does not go below
the minimum execution time of a single query stream execution for a certain time.
Otherwise this would lead to overlapping query executions what would eventually lead
to a client overload.
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